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Abstract

This paper studies the role of customer and supplier acquisition in shaping firm
dynamics and aggregate productivity. Using transaction-level data from a large
Indian state, we document lifecycle patterns of customer and supplier networks.
We find that younger firms have fewer customers and suppliers, lower sales and
intermediate expenditures, and higher output prices and input costs. Motivated
by these patterns, we develop a model of endogenous network formation where
heterogenous firms undertake costly acquisition of customers and suppliers over
the lifecycle. We study the normative properties of the model and find that the
decentralized equilibrium is inefficient due to vertical and search externalities.
Inefficient pricing and acquisition choices lead to quantitatively large aggregate
productivity losses. We use the model to study how differences in acquisition
technology map to productivity differences. We find that improvements in acqui-
sition technology can generate sizable productivity gains, and that improvements
in allocative efficiency are central for delivering these gains.
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1 Introduction

Recent empirical work suggests that firms grow, to a large degree, through matching with

trading partners (Afrouzi et al. (2023), Einav et al. (2022), Argente et al. (2023)). When

firms acquire new customers or suppliers, or separate from existing ones, they create and

destroy links in the production network. Thus the acquisition choices of firms have important

implications for the structure of the production network. Furthermore, when there gains

from variety or complementarities in production, the structure of the production network

matters for aggregate productivity. However, thus far we have limited understanding of

how acquisition efforts of firms shape aggregate productivity, mainly due to the difficulty

of modeling dynamic customer and supplier networks in an endogenous production network

setting. Moreover, differences in acquisition efforts are potentially important drivers of

productivity differences, as the technologies firms have to match with one another appear to

vary across country and over time, for example, due to differences in information technology

(Jensen (2007), Aker (2010), Goyal (2010)) or legal institutions (Boehm and Oberfield (2020),

Boehm (2022)). The objective of this paper is to develop a model of endogenous network

formation to study the implications of customer and supplier acquisition for the production

network and aggregate productivity.

We make four contributions. First, using unique firm-to-firm data from a large Indian

state1, we document lifecycle patterns of customer and supplier networks which support a

theory of firms growing through customer and supplier acquisition. Second, motivated by

these patterns, we develop a model of endogenous network formation where heterogeneous

firms undertake costly acquisition of customers and suppliers over the lifecycle. Our model

maintains tractability, despite the introduction of dynamic customer and supplier networks.

Third, we study the normative properties of this environment and find quantitatively large

aggregate productivity losses from inefficient pricing and acquisition choices. Calibrating the

model to the Indian data, we find that aggregate productivity in the efficient allocation is

16% greater than in the decentralized equilibrium. Fourth, we use the model to study how

differences in acquisition technology map to productivity differences. We find that improve-

ments in acquisition technology can generate sizable productivity gains. In a counterfactual

exercise, using a moment from Arkolakis et al. (2023) which suggests Chilean firms are able

to scale their customer and supplier networks more easily than Indian firms, we find that

aggregate productivity in India would be 3% greater if Indian firms could scale their trading

partners as easily as Chilean firms. Improvements in allocative efficiency are central for

delivering these gains.

1The state is twice Chile’s population and three times Belgium’s, both popular sources of similar data.
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In the first part of our paper, we document lifecycle patterns of customer and supplier

networks using unique firm-to-firm data from a large Indian state. The data cover the near

universe of transactions, where at least one node of the transaction lies within the state. We

find that younger firms have fewer customers and suppliers, and lower sales and intermediate

expenditure. We then view the data through the lens of a CES demand system. This allows

us to map trade flows between firms to the input costs firms face and the output prices they

charge. We find that younger firms face higher input costs and charge higher output prices.

These patterns support a theory of firms growing through acquiring customers and suppliers.

In the second part of our paper, we develop a novel model of endogenous network

formation where firms undertake costly acquisition of trading partners over the lifecycle. In

the model, there exists a continuum of monopolistically competitive firms which produce

unique varieties using labor and varieties produced by other firms. The economy features

search frictions, which entail that a firm is only able to trade with partners it is connected to.

In order to connect with trading partners, in each period, firms exert costly acquisition effort,

both for matching with customers and suppliers, and matches are made via an aggregate

matching function. Importantly, the cost of acquisition effort is strictly convex, creating

an incentive for firms to spread out acquisition efforts over time. At the firm level, these

acquisition efforts give rise to the lifecycle patterns observed in the data. At the aggregate

level, these acquisition efforts give rise to an endogenous production network. This search

and matching process is what we refer to as the “acquisition technology”.

In general, introducing dynamic customer and supplier networks into an endogenous

production network model adds significant complexity. When firms decide how much effort

to exert in acquiring partners, they have to consider how potential partners will evolve over

time. However, how a given customer (supplier) evolves over time depends itself on how the

customer’s (supplier’s) own customers and suppliers evolve over time. This logic continues ad

infinitum, such that an individual customer’s (supplier’s) evolution depends on the evolution

of all firms upstream and downstream of it. In our setting, we maintain tractability by making

assumptions on the acquisition technology and firm productivity process which imply that,

in equilibrium, the age and productivity of a partner become a sufficient type to describe it.

We study the normative properties of this environment. We find that the decentral-

ized equilibrium is inefficient due to vertical and search externalities. Firms set prices too

high and underutilize intermediate inputs relative to the efficient allocation due to double

marginalization. In addition, firms make inefficient acquisition choices due to the presence

of vertical and congestion externalities. When choosing acquisition effort, firms do not in-

ternalize the surplus they generate for partners they match with. In addition, firms fail to
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internalize how their customer (supplier) acquisition effort reduces matching probabilities

for other firms searching for customers (suppliers). We find that inefficient pricing and ac-

quisition choices generate large aggregate losses. Calibrating the model to the Indian data,

we find that aggregate productivity in the efficient allocation is 16% greater than in the

decentralized equilibrium.

Finally, we use the model to study how differences in acquisition technology map to

productivity differences. In the model, this technology is summarized by two parameters,

capturing the level and curvature of acquisition costs. When firms are able to scale their trad-

ing partners more easily, due to lower curvature in acquisition costs, high-productivity firms

expand acquisition relative to low-productivity firms. As a result, the production network

features a greater share of links between high-productivity firms. This greater concentration

of links between high-productivity types generates higher aggregate productivity, even when

the total number of links is the same. On the other hand, when the level of acquisition costs

is lower, all firms acquire more partners. The resulting network features more firm-to-firm

links, generating higher aggregate productivity as firms benefit from gains from variety.

To quantify the effects of these channels on aggregates, we calibrate the model to match

key features of the data. In particular, the curvature of acquisition costs is disciplined by the

elasticity between number of customers and sales. In our data, we estimate this elasticity to

be 0.36. For comparison, Arkolakis et al. (2023) find a somewhat higher elasticity in Chilean

firm-to-firm data, suggesting Chilean firms are able to scale their customer and supplier

networks more easily. In a counterfactual exercise, we recalibrate the model to target the

Chilean moment, holding fixed the total number of connections. We find that aggregate

productivity increases by 3% relative to the baseline. As the total number of connections is

held fixed, this productivity gain is due to the production network being more concentrated

in links between high-productivity firms. Furthermore, improvement in allocative efficiency

plays a central role in delivering this productivity gain. In inefficient economies, changes

in technology affect aggregate productivity through affecting both technical efficiency, i.e.

productivity in the efficient allocation, and allocative efficiency, i.e. distance of the decen-

tralized allocation from the efficient allocation. We find that roughly 4/5 of the 3% gain

in aggregate productivity is due to improvement in allocative efficiency, while 1/5 is due to

improvement in technical efficiency.

As for the level of acquisition costs, the elasticity of aggregate output with respect to

the level of acquisition costs depends only on the intermediate share, the elasticity of sub-

stitution across inputs, and the curvature of acquisition costs. Under our calibration, a 10%

reduction in the level of acquisition costs leads to a 1.0% increase in aggregate productivity.
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This paper contributes to several strands of the literature studying endogenous pro-

duction networks. This literature has taken seriously the idea that the production network is

an endogenous object arising out of individual firm decisions and has documented numerous

facts on firm-to-firm trade. Empirically, we contribute to this literature by adding facts on

the lifecycle dimension of trade.

Theoretically, we relate to models in this literature in which trading partners evolve

over time. Lim (2018) studies a model in which the value of relationships vary over time

due to idiosyncratic shocks. In their model, dynamics of customers and suppliers arise

out of the dynamics of idiosyncratic shocks. Huneeus (2020) builds on this framework by

introducing adjustment costs which prevent firms from readjusting customers and suppliers.

Boehm et al. (2024) study a model in which potential suppliers arrive randomly according

to a Poisson process. We differ from existing work by modeling dynamics which arise from

a random search process. In our environment, dynamics arise out of firms being unable

to match immediately with their steady-state set of partners due to the presence of search

frictions. Instead, firms slowly acquire customers and suppliers over time through exerting

costly acquisition effort. This allows us to generate the lifecycle patterns we document in

the data. Our contribution is to demonstrate that inefficiency in customer and supplier

acquisition (search effort) can lead to quantitatively large aggregate productivity losses, and

that changes in allocative efficiency are central for understanding how technology differences

map to productivity differences.

In modeling the production network as being formed through search and matching,

we relate to Arkolakis et al. (2023) and Demir et al. (2023). We extend such models by

introducing dynamics in customer and supplier networks.

Incorporating dynamics which arise from search frictions, however, introduces signifi-

cant complexity. When deciding how much effort to exert in acquiring partners, firms require

conjectures about how partners’ payoff-relevant attributes will evolve over time (e.g. the in-

termediate demands of customers, and the output prices of suppliers). The evolution of these

payoff-relevant attributes depends on the acquisition choices of the partner, but also on the

evolution of their own partners’ attributes. Thus, in equilibrium, a firm’s conjecture about

how a given partner’s attributes evolve has to be consistent with not only the acquisition

choices of the partner, but also the acquisition choices of all firms upstream and downstream

of the partner.

In our setting, we maintain tractability by making assumptions on the acquisition

technology and firm productivity process which imply that, in a stationary equilibrium, the

age and productivity of a partner become a sufficient state to describe it. As a result, firms
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can instead use conjectures about the attributes of given states, and understand how partners

transition through the state space over time.

The efficiency properties of our model are similar to those of several endogenous pro-

duction network models. Though we differ by featuring dynamic customer and supplier

networks, the underlying inefficiencies in our model are the same as those in models which

rely on search and matching as the network formation technology: Arkolakis et al. (2023),

Demir et al. (2023). The inefficiencies in our model are also related to those in endogenous

network models which rely on other network formation technologies (Lim (2018), Huneeus

(2020), among others), as even in these models, firms do not fully internalize how their

network formation choices affect their partners. Again, our contribution is to demonstrate

that aggregate losses from inefficiencies can be quantitatively large, and that changes in

allocative efficiency play a central role in understanding how technology differences map to

productivity differences.

This paper also contributes to the literature on customer capital. Theoretically, this

literature has posited that firms must spend resources to match with trading partners due

to the presence of search frictions (e.g. Drozd and Nosal (2012), Gourio and Rudanko

(2014), Arkolakis (2010)). This is also the case in our model. However we differ from the

customer capital literature by embedding firms in an endogenous network. As a result,

acquisition efforts have implications for upstream and downstream firms and the structure

of the production network. Empirically, this literature has documented the importance of

customer growth in explaining sales growth. Examples of recent work include Afrouzi et al.

(2023), Argente et al. (2023), Einav et al. (2022), and Fitzgerald et al. (2023). Our lifecycle

patterns align with the findings of this literature, that firms grow through expanding their

customer networks. We also add complementary patterns on the supplier side.

The paper is organized in the following way. In Section 2, we describe our data and

document lifecycle facts on customers and suppliers. In Section 3, we describe our model.

In Section 4, we describe our estimation procedure and discuss firm dynamics in our setting.

In Section 5, we study the normative properties of our model. In Section 6, we study how

the acquisition technology shapes aggregate productivity.
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2 Data and Lifecycle Facts

2.1 Data

Data on the production network comes from daily transactions between registered establish-

ments in a large Indian state and all registered establishments throughout India or abroad.

In April 2018, the state tax authority created an E-Way Bill System to improve tax com-

pliance. Under the new system, any transaction with value exceeding 50,000 Rs (700 USD)

must be reported electronically using the system. The system generates a waybill which

the transporter must carry during shipment. The waybill contains the Permanent Account

Number (Tax ID) of the supplier and customer, the 4-digit HSN code of the product, and

the value of the shipment. We define a firm to be the combination of a Tax ID and HSN.

We add data on firm age from two separate sources. The first source is state records on

various types of registration (e.g. year of incorporation, year of registration with state tax

authority, etc.). We call the first year a firm is registered with the state as the registration

year of the firm. The state registration data provides registration years for 1,100,000 firms

in our sample. The second source is a large online platform connecting buyers and sellers

called IndiaMART. IndiaMART is the largest online B2B marketplace in India and contains

rich information about the firms on the platform. Included in this information is the year of

establishment. IndiaMART provides a year of establishment for 75,000 firms in our sample.

We assign the birth year of a firm as the minimum between the year of establishment and

the year of registration. In total, we can assign birth years for 1,170,000 firms in our sample.

We assign the firm’s age as the difference between the year 2018 and the firm’s birth year.

We use the sample of transactions which occur between April 2018 and March 2019.

We drop any firms which are born after 2017 in order to ensure we observe a full year of

transactions for every firm in the sample. Lastly, as will be explained further below, we also

only keep the largest connected set of firms within each HSN. This leaves us with 2,900,000

links between 1,700,000 firms.

In Figure 1, we plot the age distribution of firms. Specifically, we plot the fraction of

Tax IDs with a given age. As can be seen in the figure, there is a large mass of Tax IDs

with ages between 11 - 13. This is due to the introduction of a new state value added tax

system in the year 2005. Under the new law, many existing firms registered with the state

authority. As this makes it difficult to determine the true age of these firms, in our empirical

work, we group firms 11 and older into a single category.
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Figure 1: Distribution of Firm Age

Note: We plot the fraction of Tax IDs with a given age. The large mass of firms between ages 11-13 is due
to the introduction of a new VAT system in 2005, under which many existing firms registered with the state.

2.2 Lifecycle Facts on Customers and Suppliers

In this section, we document lifecycle patterns of customer and supplier networks. Younger

firms have fewer customers and suppliers, lower sales and intermediate expenditures, and

higher output prices and input costs. The patterns support a theory of firms growing through

acquisition of customers and suppliers over time. Motivated by these patterns, in Section 3,

we develop an endogenous network model which features customer and supplier acquisition.

We first document patterns which do not rely on a demand system. We call these

patterns “Facts”. We then view the data through the lens of a CES demand system to map

trade flows between firms to the input costs firms face and the output prices they charge. We

call these findings which require the assumption of a CES demand system as “CES Facts”.

For all of the patterns we document, we estimate fixed effects for 4 age categories: Age 1-3,

Age 4-6, Age 7-10, Age 11+. We refer to firms in the Age 1-3 category as “entrants”.

Fact 1 Younger firms have fewer customers and lesser sales.

Figure 2 displays lifecycle patterns of number of customers and sales within an HSN.

In particular, for each variable of interest y, we estimate the following regression equation:
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log (yi,hsn) =
∑
a

γa1(agei ∈ a) +
∑
h

γh1(hsn = h) + εi,hsn (1)

Here, hsn refers to the 4-digit HSN within which the firm sells, i refers to the firm’s Tax ID,

1(agei ∈ a) is an indicator variable which equals 1 if the age assigned to the Tax ID is in

age category a, and 1(hsn = h) is an indicator variable which equals 1 if the firms sells its

product in the 4-digit HSN category h.

In Figure 2, we display the estimates of interest, γa, normalizing by youngest age group.

The normalized estimates express the difference in log number of customers and log sales for

firms in a given age category relative to entrants who sell products in the same HSN. Firms

which are 11+ have 36% more customers within an HSN than entrants in the same HSN.

Firms which are 11+ have 57% greater sales within an HSN than entrants in the same HSN.

Figure 2: Sales and Number of Customers

Note: We plot estimated age fixed effects, γa, from Equation 1 along with bootstrap standard errors,
normalizing by the youngest age group. The normalized estimates express the difference in log number
of customers (within an HSN) and log sales (within an HSN) for firms in a given age category relative to
entrants who sell products in the same HSN.

Fact 2 Younger firms have fewer suppliers and lesser intermediate expenditure.

Figure 3 displays lifecycle patterns of number of suppliers and intermediate expenditure

within an HSN. In particular, for each variable of interest y, we estimate the following

regression equation:
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log (yi,hsn) =
∑
a

γa1(agei ∈ a) +
∑
h

γh1(hsn = h) + εi,hsn (2)

Here, hsn refers to the 4-digit HSN from which the firm purchases its inputs, i refers

to the firm’s Tax ID, 1(agei ∈ a) is an indicator variable which equals 1 if the age assigned

to the Tax ID is in age category a, and 1(hsn = h) is an indicator variable which equals 1

if the firms purchases its inputs from from the 4-digit HSN category h.

In Figure 3, we display the estimates of interest, γa, normalizing by youngest age

group. The normalized estimates express the difference in log number of suppliers and log

intermediate expenditure for firms in a given age category relative to entrants who purchase

inputs from the same HSN. Firms which are 11+ have 11% more suppliers in an HSN than

entrants who purchase inputs from the same HSN. Firms which are 11+ have 59% greater

intermediate expenditure in an HSN than entrants who purchase inputs from the same HSN.

Figure 3: Intermediate Expenditure and Number of Suppliers

Note: We plot estimated age fixed effects, γa, from Equation 2 along with bootstrap standard errors,
normalizing by the youngest age group. The normalized estimates express the difference in log number
of suppliers (within an HSN) and log intermediate expenditure (within an HSN) for firms in a given age
category relative to entrants who purchase inputs from the same HSN.

The positive relationship between firm size and firm age is well documented. Existing

work has documented this relationship using sales or employment as the measure of size.

Here, we find the same relationship using number of trading partners as the measure of size.
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We now impose the assumption of a CES demand system. Viewing the data through

the lens of a CES demand system allows us to map trade flows between firms to input costs

firms face and output prices they charge. Specifically, we assume that a customer minimizes

the cost of sourcing an HSN intermediate good, which is a CES aggregate of varieties the

customer purchases from different suppliers.

min
νij,hsn

∑
i∈Gj,hsn

pi,hsnνij,hsn s.t.

 ∑
i∈Gj,hsn

(qi,hsnνij,hsn)
σ−1
σ

 σ
σ−1

≥ xj,hsn

Here xj,shn denotes the quantity of the HSN hsn good customer j requires, Gj,hsn denotes

the set of HSN hsn suppliers customer j is connected to, and νij,hsn denotes the quantity

customer j demands from supplier i. Suppliers may vary in the quality of their variety,

qi,hsn, and charge price pi,hsn. The elasticity of substitution across varieties is given by

σ > 1. Solving the problem of the customer, the log share of HSN hsn expenditure customer

j spends on supplier i (i.e. the log input share) is given by:

eij,hsn = (1− σ)log

(
pi,hsn
qi,hsn

)
− (1− σ)log (cj,hsn)

The input share of customer j on supplier i within HSN hsn, eij,hsn, is a log-linear function of

the supplier’s quality-adjusted output price
pi,hsn
qi,hsn

and the customer’s quality-adjusted input

cost cj,hsn =

(∑
i∈Gj,hsn

(
pi,hsn
qi,hsn

)1−σ
)1/(1−σ)

.

Guided by this relationship, we estimate the following regression equation:

eij,hsn = ψi,hsn + ϕj,hsn + εij,hsn (3)

where i denotes the Tax ID of the supplier, j denotes the Tax ID of the customer, and hsn

denotes the HSN of the expenditure. That is, we project log input share onto a supplier

fixed effect, ψi,hsn, and a customer fixed effect ϕj,hsn. Notice under our assumptions, ψi,hsn

corresponds to the supplier’s quality-adjusted output price and ϕj,hsn corresponds to the

customer’s quality-adjusted input cost. We estimate Equation 3 and discuss the results

below.2

2Estimating Equation 3 using OLS poses a threat to identification. To obtain unbiased estimates, the
assignment of suppliers to customers must be exogenous with respect to εi,j,hsn, an assumption referred to
as “exogenous mobility” in the labor literature (Abowd et al. (1999)). In Appendix A.1 we argue that in
the case this assumption is violated, our estimated differences between young and old firms represent lower
bounds. That is, the true differences in input costs and output prices between young and old firms are larger.
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CES Fact 1 Younger firms have higher input costs

Figure 5 displays lifecycle patterns of ϕj,hsn from Equation 3. In particular, we estimate

the following regression equation:

ϕj,hsn =
∑
a

γa1(agej ∈ a) +
∑
h

γh1(hsn = h) + εj,hsn (4)

Here, hsn refers to the 4-digit HSN from which the firm purchases its inputs, j refers

to the firm’s Tax ID, 1(agej ∈ a) is an indicator variable which equals 1 if the age assigned

to the Tax ID is in age category a, and 1(hsn = h) is an indicator variable which equals 1

if the firms purchases its inputs from from the 4-digit HSN category h.

In Figure 5, we display the estimates of interest, γa, normalizing by the youngest age

group. The normalized estimates express the difference in ϕj,hsn for a given age group relative

to entrants who purchase inputs in the same HSN. Firms which are 11+ have fixed effects

which are 0.28 less than entrants who purchase inputs from the same HSN. Noting that

ϕj,hsn = (σ− 1)log (cj,hsn) under our assumptions on input demand, if σ = 4.30, this implies

that firms which are 11+ have 8% lower input costs than entrants.

CES Fact 2 Younger firms charge higher output prices

Figure 6 plots lifecycle patterns of ψi,hsn from Equation 3. In particular, we estimate

the following regression equation:

ψi,hsn =
∑
a

γa1(agei ∈ a) +
∑
h

γh1(hsn = h) + εi,hsn (5)

Here, hsn refers to the 4-digit HSN within which the firm sells, i refers to the firm’s

Tax ID, 1(agei ∈ a) is an indicator variable which equals 1 if the age assigned to the Tax

ID is in age category a, and 1(hsn = h) is an indicator variable which equals 1 if the firms

sells its product in the 4-digit HSN category h.

In Figure 6, we display the estimates of interest ,γa, normalizing by youngest age group.

The normalized estimates express the difference in ψi,hsn for a given age category relative to

entrants who sell products in the same HSN. Firms which are 11+ have fixed effects which

are 0.07 greater than entrants in the same HSN. Noting that ψi,hsn = (1 − σ)log
(

pi,hsn
qi,hsn

)
In order for ψi,hsn to be identified, a firm must have at least 2 customers. Similarly, in order for ϕj,hsn

to be identified, a firm must have at least 2 suppliers. Thus, we will only be able to recover fixed effects for
firms in our sample which meet this criteria. Furthermore, the estimated fixed effects can only be compared
within a connected set. Thus, for each HSN, we isolate the giant component (the largest connected set), and
estimate Equation 3 on this set.
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Figure 4: Input Share Customer Effect ϕj,hsn

Note: We plot estimated age fixed effects, γa, from Equation 4 along with bootstrap standard errors,
normalizing by the youngest age group. The normalized estimates express the difference in ϕj,hsn for firms
in a given age group relative to entrants who purchase inputs in the same HSN. Under our assumptions on
input demand, ϕj,hsn = (σ − 1)log (cj,hsn).

under our assumptions on input demand, if σ = 4.30, this implies that firms which are 11+

charge 2% lower output prices than entrants.

Our CES Facts rely on assumptions that a given supplier charges the same quality-

adjusted price to all of its customers and that customers have a constant elasticity of sub-

stitution across suppliers. The waybills which comprise our transaction data also have an

entry for quantity of good shipped. This information is not required by the tax authority,

so it is frequently missing in the waybills. However for the subset of transactions for which

we can observe both transaction values and quantities, we can construct unit values. In

Appendix A.2, we decompose variation in these unit values. We find that variation within

supplier across customers plays a small role in explaining the total variation in unit values.

This lends support to our assumptions.

The lifecycle patterns we document are in line with a theory of firm dynamics in which

firms slowly grow over time due to frictions in firm-to-firm matching. However, these pat-

terns could also arise in a model in which the customer and supplier networks of a firm

are determined period-by-period by the firm’s idiosyncratic productivity, combined with a

positive correlation between age and idiosyncratic productivity (e.g. due to survivorship
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Figure 5: Input Share Customer Effect ϕj,hsn controlling for Sales

Note: We plot estimated age fixed effects, γa, from Equation 4 along with bootstrap standard errors,
normalizing by the youngest age group. The normalized estimates express the difference in ϕj,hsn for firms
in a given age group relative to entrants who purchase inputs in the same HSN. Under our assumptions on
input demand, ϕj,hsn = (σ − 1)log (cj,hsn).

bias or “learning-by-doing”). In this case, the lifecycle patterns just reflect a positive cor-

relation between age and idiosyncratic productivity, and matching frictions do not play an

important role in shaping firm dynamics. In Appendix A.3, we repeat the empirical analysis

of this section, controlling for firm sales. We find that, controlling for sales, younger firms

have fewer customers and lower output prices. Furthermore, controlling for sales, younger

firms have fewer suppliers, higher input costs, and lesser intermediate expenditure. These

patterns suggest that frictions in firm-to-firm matching play an important role in shaping

firm dynamics.

Given that we can construct unit values for a subset of transactions, an alternative

we could have followed is to document lifecycle patterns in unit values. The issue with

this approach, however, is that we are not able to control for quality heterogeneity as we

do not observe any attributes of the products. Thus it may be the case that a firm which

faces a higher unit cost, actually faces a lower cost per effective unit due to being provided

greater quality. Similarly, it may be the case that a firm which charges a lower unit price,

actually charges a higher price per effective unit due to providing lesser quality. Instead, in

our approach, we are able to infer price per effective unit and cost per effective unit using

the observed demand of customers. The assumptions we make provide a way to control for
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Figure 6: Input Share Supplier Effect ψi,hsn

Note: We plot estimated age fixed effects, γa, from Equation 5 along with bootstrap standard errors,
normalizing by the youngest age group. The normalized estimates express the difference in ψi,hsn for firms
in a given age group relative to entrants who sell products in the same HSN. Under our assumptions on

input demand, ψi,hsn = (1− σ)log
(

pi,hsn

qi,hsn

)
.

quality heterogeneity, despite lacking information about product attributes.

In summary, we find that younger firms have fewer customers and suppliers, lower sales

and intermediate expenditures, and higher input costs and output prices. These findings

are in line with a theory in which firms grow through acquiring customers and suppliers.

Acquiring customers shifts out a firm’s demand, increasing sales through an extensive margin.

Acquiring suppliers reduces a firm’s marginal cost, allowing it to reduce its output price and

sell more to existing customers. Motivated by these patterns, we develop an endogenous

production network model which features customer and supplier acquisition.

3 Model of Network Formation

In this section, we develop a model of the production network in which the network is an

endogenous object arising out of acquisition efforts of firms. Time is discrete. The economy

is inhabited by a continuum of monopolistically competitive firms which produce unique

varieties. Each firm is endowed with a permanent productivity and operates a constant

returns to scale technology which uses labor and varieties produced by other firms as inputs.
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The economy features search frictions which entail that a firm is only able to trade with

the subset of all firms it is connected to. In order to connect with trading partners, firms,

in each period, exert costly acquisition effort and match with new customers and suppliers

via random search. We assume that the cost of acquisition is strictly convex. This generates

the feature that firms slowly acquire customers and suppliers over the lifecycle rather than

jumping immediately to a steady-state. This search and matching process is what we refer

to as the “acquisition technology”.

3.1 Technology

Firm i produces a unique variety using a constant returns to scale technology:

yt(i) = κz(i)lt(i)
αxt(i)

1−α

yt(i) = κz(i)
(
αlt(i)

η−1
η + (1− α)xt(i)

η−1
η

) η
η−1

Here, z(i) denotes the firm’s permanent productivity, lt(i) denotes the quantity of labor it

uses in time period t, and xt(i) denotes the quantity of an intermediate bundle it uses. The

intermediate bundle is a CES aggregate of varieties it purchases from its suppliers.

xt(i) ≡

(∫
Gi,t

νt(i, k)
(σ−1)/σdk

)σ/(σ−1)

Gi,t denotes the set of suppliers of firm i in time period t, and νt(i, k) denotes the

quantity of goods purchased from supplier k. The set of suppliers is a continuum and

evolves endogenously over time according to a process described in Section 3.3. Given the

set of suppliers, Gi,t, the price index of firm i’s intermediate bundle is given by:

ct(Gi,t) =

(∫
Gi,t

p̃t(k, i)
1−σdk

)1/(1−σ)

where p̃t(k, i) denotes the price supplier k charges firm i. Setting wage as the numeraire, the

marginal cost of firm i is given by:

mct(i) =
ct(i)

1−α

z(i)
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3.2 Demand

Firms sell to other firms and the representative household. We assume there are no frictions

in matching with the representative household, so that all firms are exogenously connected

to the representative household. Search frictions, however, do exist in matching with other

firms. Thus, firms exert costly acquisition effort to acquire customers through a process

described further in Section 3.3. As each customer will have a continuum of suppliers, we

assume the market structure is monopolistic competition.

Let Hi,t denote the set of firms which are customers of firm i in time period t. Again,

Hi,t is an endogenous object which evolves over time according to a process which will be

described in Section 3.3. Let pt(i, j) denote the price firm i charges firm j ∈ Hi,t in time

period t. The production technology implies sales from firm i to firm j are given by:

rt(i, j) =

(
pt(i, j)

ct(Gj,t)

)1−σ

mt(j) ∀j ∈ Hi

where mt(j) ≡
∫
Gj,t

rt(i, j)di denotes the total intermediate expenditure of firm j in time

period t.

The representative household supplies labor inelastically and spends its entire income

on a CES bundle of varieties. We assume final customers have the same elasticity of substi-

tuion across varieties as firms. Let pft (i) denote the price firm i charges the representative

household in time period t. Final demand for firm i’s variety is given by:

FDt(i) =

(
pft (i)

Pt

)1−σ

Xt

where Pt is an index of firm prices:

Pt ≡
(∫

pft (k)
1−σdk

) 1
1−σ

and Xt denotes the income of the household. We assume firm profits are rebated to the

household. Household income is then the sum of labor income and firm profits:

Xt = 1 +

∫
πt(k)dk

Summing sales to downstream firms and the household, total demand for firm i is given by:
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st(z(i), Gi,t, Hi,t) =

(
pft (i)

Pt

)1−σ

Xt +

∫
Hi,t

(
pt(i, j)

ct(Gj,t)

)1−σ

mt(j)dj

3.3 Network Formation

Firms enter without any customers or suppliers. Due to the presence of search frictions, firms

must exert costly acquisition effort and engage in random search to match with customers and

suppliers. Specifically, in period t firm i exerts effort in finding customers ut(i) and effort in

finding suppliers vt(i). Exerting effort ut(i) costs the firm φh(ut(i)) units of labor and exerting

effort vt(i) costs the firm φg(vt(i)) units of labor. We assume ∂φh(u)
∂u

> 0 and ∂φg(v)

∂v
> 0.

Importantly, we also assume ∂2φh(u)
∂u2 > 0 and ∂2φg(v)

∂v2
> 0. This assumption of strictly convex

acquisition costs encapsulates our idea of “acquisition”. It generates the feature that firms

slowly acquire customers and suppliers over the lifecycle rather than jumping immediately

to a steady-state.

LetHi,t(z
′, a′) denote the measure of productivity z′, age a′ customers a firm is matched

with in time period t and let Gi,t(z
′, a′) denote the measure of productivity z′, age a′ suppliers

a firm is matched with in time period t.3

Given the acquisition efforts of all firms, the measure of new connections formed in

time period t is given by an aggregate matching function M (Ut,Vt), where Ut ≡
∫
ut(k)dk

is the aggregate measure of customer acquisition effort and Vt ≡ vt(k)dk is the aggregate

measure of supplier acquisition effort. Thus, exerting customer acqusition effort ut(i) results

in a measure of new customers:

ut(i)
M (Ut,Vt)

Ut

Note here, the firm matches with a measure of new customers, rather than a discrete number.

This implies that each firm is connected to a continuum of customers. Conditional on

matching with a customer, the probability the customer is in some set C is proportional to

the supplier acquisition effort of firms in that set. Thus, the measure of new customers firm

i matches with in some set C is given by:

ut(i)
M (Ut,Vt)

Ut

∫
C vt(k)dk

Vt

3This is an abuse of notation, as before Gi,t and Hi,t were defined as sets.
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Similarly, exerting effort vt(i) results in a measure of new suppliers:

vt(i)
M (Ut,Vt)

Vt

Again, note the firm matches with a measure of new suppliers, rather than a discrete number.

This implies that each firm is connected to a continuum of suppliers. Conditional on matching

with a supplier, the probability the supplier is in some set C is proportional to the customer

acquisition effort of firms in that set. Thus, the measure of new suppliers firm i matches

with in some set C is given by:

vt(i)
M (Ut,Vt)

Vt

∫
C ut(k)dk

Ut

At the end of every period, a share δ of existing relationships are exogenously destroyed.

The matching and separation processes imply the following laws of motion for customer

and supplier networks:

Hi,t(z
′, a′) = ut(i)

M (Ut,Vt)

Ut

ṽt(z
′, a′)nt(z

′, a′)

Vt

+ (1− δ)Hi,t−1(z
′, a′ − 1) (6)

Gi,t(z
′, a′) = vt(i)

M (Ut,Vt)

Vt

ũt(z
′, a′)nt(z

′, a′)

Ut

+ (1− δ)Gi,t−1(z
′, a′ − 1) (7)

where ṽt(z
′, a′) denotes the supplier acquisition effort of (z′, a′) firms, ũt(z

′, a′) denotes the

customer acquisition effort of (z′, a′) firms, and nt(z
′, a′) denotes the measure of (z′, a′) firms

in the economy. These laws of motion conjecture that all (z′, a′) firms make the same

customer and supplier acquisition decisions. These conjectures will be true in equilibrium.

Intuitively, the measure of (z′, a′) customers a firm is connected to in period t is equal to

the measure of new (z′, a′) matches made this period plus the measure of (z′, a′−1) customers

the firm had in the previous period which survive. Similarly, the measure of (z′, a′) suppliers

a firm is connected to in period t is equal to the measure of new (z′, a′) matches made this

period plus the measure of (z′, a′ − 1) suppliers the firm had in the previous period which

survive. At times, we will refer to the laws of motion described in 6 and 7 by:

Hi,t = Γh
t (ut(i), Hi,t−1)

Gi,t = Γg
t (vt(i), Gi,t−1)
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The choice of indexing customers and suppliers by (z′, a′) is a deliberate one. Firms

need to know several things about potential customers and suppliers when making their

acquisition choices. With respect to suppliers, firms need to know the output price a given

supplier will charge. This depends not only on the productivity z′ of the supplier, but also

on the supplier’s set of suppliers. With respect to customers, firms need to know the input

cost of a given customer as well as their total input expenditure. Again, this depends not

only on the productivity z′ of the customer, but also on the customer’s customers and the

customer’s suppliers. However, due to our assumptions on the acquisition technology and the

firm productivity process, in equilibrium, all (z′, a′) firms will have identical customer and

supplier sets and thus identical output prices, input costs, and intermediate expenditures.

They will also make identical customer and supplier acquisition efforts. Thus (z′, a′) serves

as a sufficient type to identify customers and suppliers.

3.4 Timing

Timing in the model is as follows:

1. Measure ne
t of new firms enter and draw permanent productivity

2. Firms pay acquisition costs and match with new customers and suppliers

3. Firms produce and sell to household and other firms

4. Share (1− β) of firms exit and share δ of relationships destroyed

3.5 Firm Problem

Firms maximize the discounted sum of profits. The problem of the firm is formulated in

(8). A firm with talent z, previous-period customer set Ht−1 and previous-period supplier

set Gt−1 chooses customer acquisition effort ut, supplier acquisition effort vt, price to charge

the household pft , and price to charge a (z′, a) customer pt(z
′, a′) to maximize the sum of

current-period profits and value next period.

Vt(z,Gt−1, Ht−1) = max
ut,vt,p

f
t ,pt

pft −mct(z,G)

pft

(
pft
Pt

)1−σ

Xt

+

∫
Z,A

pt(z
′, a′)−mct(z,G)

pt(z′, a′)

(
pt(z

′, a′)

c̃t(z′, a′)

)1−σ

m̃t(z
′, a′)Ht(z

′, a′)dz′da′

− φh(ut)− φg(vt) + βVt+1(z,Gt, Ht) (8)
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Gt = Γg
t (vt, Gt−1), Ht = Γh

t (ut, Ht−1)

mct(z,G) =
1

z

(∫
Z,A

p̃t(z
′, a′)1−σGt(z

′, a′)dz′da′
)(1−α)/(1−σ)

Given the previous period customer and supplier sets, acquisition efforts ut and vt

result in current-period sets, Ht and Gt. The construction of these sets requires conjec-

tures about the acquisition efforts of other firms, ũt(z
′, a′) and ṽt(z

′, a′). Given the set of

current-period suppliers, the firm can compute its marginal cost mct(z,G). This computa-

tion also requires conjectures about the output prices charged by other firms p̃t(z
′, a′). Given

its marginal cost and current-period customers, the firm chooses the output price to charge

its customers. Notice, calculating current-period profits from charging a price pt(z
′, a′) to a

(z′, a′) customer requires conjectures about the customer’s input cost c̃t(z
′, a′) and intermedi-

ate expenditure m̃t(z
′, a′). Similarly, calculating current-period profits from charging a price

pft to the household requires conjectures about the aggregate price index Pt and household

income Xt.

Modeling both pricing choices and acquisition choices together introduces a potentially

complicated problem. For example, in certain models, firms initially offer low prices to

accumulate customers faster. Pricing choices can interact with acquisition choices in a non-

trival way to shape the evolution of trading partners. Our assumptions on the network

formation process provide tractability here.

First, notice that the price a firm charges does not affect the evolution of its customer

or supplier network in Equations 6 and 7. This implies that the firm faces a static pricing

problem and charges the standard monopolistic competition markup over its marginal cost.

This feature in our model that firms use non-price actions rather than dynamic pricing to

accumulate demand is in line with recent empirical evidence. Argente et al. (2023) find

that markups in the consumer food sector do not systematically vary with a firm’s age in

a market. Fitzgerald et al. (2023) find that following successful entry into export markets,

exporters have post-entry dynamics of quantities, but no post-entry dynamics of markups.

Second, the assumptions of CES and all customers having the same elasticity of sub-

stitution imply that every firm charges the same markup µ = σ
σ−1

to all of its customers.
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Taking this into account, we can rewrite the firm problem as:

Vt(z,Gt−1, Ht−1) = max
ut,vt

µ− 1

µ

(
µct(Gt)

1−α

zPt

)1−σ

Xt

+

∫
Z,A

µ− 1

µ

(
µct(Gt)

1−α

zc̃t(z′, a′)

)1−σ
1− α

µ
s̃t(z

′, a′)Ht(z
′, a′)dz′da′

− φh(ut)− φg(vt) + βVt+1(z,Gt, Ht) (9)

Gt = Γg
t (vt, Gt−1), Ht = Γh

t (ut, Ht−1)

ct(Gt) =

(∫
Z,A

(
µc̃t(z

′, a′)1−α

z′

)1−σ

Gt(z
′, a′)dz′da′

)1/(1−σ)

A firm chooses acquisition efforts ut and vt to maximize the sum of discounted profits.

There is no longer an explicit pricing choice as the firm charges a constant markup µ = σ
σ−1

over its marginal costs. The firm still requires conjectures about the acquisition choices

of other firms ũt(z
′, a′), ṽt(z

′, a′), and the input costs of other firms c̃t(z
′, a′), however it

no longer requires an explicit conjecture about other firms’ output prices. It understands

all firms charge a constant markup over their marginal cost. Also, rather than requiring

a conjecture about a customer’s intermediate expenditure, m̃t(z
′, a′), the firm now requires

a conjecture about the customer’s sales, s̃t(z
′, a′). The firm understands that a customer’s

intermediate expenditure is equal to a share 1−α
µ

of its sales.

Solving the firm’s problem, a firm’s optimal customer acquisition choice is given by:

µ− 1

µ

∞∑
τ=0

∑
z′,a′

((1− δ)β)τ
(
µct+τ (Gt+τ )1−α

zc̃t+τ (z′, a′ + τ)

)1−σ
1− α

µ
s̃t+τ (z

′, a′ + τ)
M (Ut,Vt)

Ut

ṽt(z′, a′)nt(z′, a′)

Vt
=

∂φh(ut)

∂ut
(10)

The term on the left is the marginal benefit of customer acquisition. This is equal to the

discounted sum of future profits generated by (z′, a′) customers, multiplied by the measure

of (z′, a′) matches an additional unit of acquisition creates. Future profits generated from a

(z′, a′) customer depend on the path of the customer’s sales, which governs their intermediate

expenditure, and the path of the firm’s input cost relative to the customer’s input cost, which

governs the firm’s share in the customer’s intermediate expenditure. This marginal benefit

is set equal to the marginal cost of acquisition, which is the term on the right.

Equation 10 highlights how the firm’s problem in our framework differs from other
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models of customer and supplier matching. Relative to one-sided matching models in which

firms acquire customers from an exogenous set (e.g. customer capital models), a key differ-

ence here is that the set of customers is an endogenous object. For example, the endogenous

supplier acquisition effort of a (z′, a′) firm, ṽ(z′, a′), affects the measure of matches a firm

makes with (z′, a′) customers. In our framework, firm acquisition efforts endogenously re-

spond to the acquisition efforts of potential partners on the other side of the market.

However, there also exist two-sided matching models in which a set of customers

searches for suppliers and a set of suppliers searches for customers. In these models, firm

acquisition efforts do endogenously respond to the other side of the market. Relative to to

this class of models, however, a key difference here comes from firms being embedded in a

network. When a firm acquires customers, this shifts out demand not only for it, but also

for its suppliers. A firm’s customer acquisition effort affects the profits of its suppliers and

so also the customer acquisition effort of its suppliers. This can be seen through the sales

of a (z′, a′) customer, s̃t(z
′, a′), entering Equation 10. The fact that firms do not consider

the profits of their customers when making their acquisition choices will give rise to vertical

externalities which we explore further in Section 5.

µ− 1

µ

∞∑
τ=0

∑
z′,a′

((1− δ)β)τ
(
µc̃t+τ (z′, a′ + τ)1−α

z′ct+τ (Gt+τ )

)1−σ

(1− α)st+τ (z,Gt+τ , Ht+τ )
M (Ut,Vt)

Vt

ũt(z′, a′)nt(z′, a′)

Ut
=

∂φg(vt)

∂vt

(11)
∞∑

τ=0

∑
z′,a′

((1− δ)β)τ
µ− 1

µ
st+τ (z,Gt+τ , Ht+τ )(1− α)

(
µc̃t+τ (z′, a′ + τ)1−α

z′ct+τ (Gt+τ )

)1−σ M (Ut,Vt)

Vt

ũt(z′, a′)nt(z′, a′)

Ut
=

∂φg(vt)

∂vt

∞∑
τ=0

∑
z′,a′

((1−δ)β)τ
µ− 1

µ
st+τ (z,Gt+τ , Ht+τ )ex(ct+τ (Gt+τ ))

(
µ m̃ct+τ (z′, a′ + τ)

ct+τ (Gt+τ )

)1−σ M (Ut,Vt)

Vt

ũt(z′, a′)nt(z′, a′)

Ut
=

∂φg(vt)

vt

In Equation 11, we characterize the firm’s optimal supplier acquisition effort. The term

on the left is the marginal benefit of supplier acquisition. This is equal to the discounted

sum of future profits generated by matching with additional (z′, a′) suppliers, multiplied

by the measure of (z′, a′) matches an additional unit of acquisition creates. Additional

suppliers reduce the marginal cost of the firm, allowing them to charge lower prices to their

customers and increase their profits. This marginal benefit is equated to the marginal cost

of acquisition, which is the term on the right.

Similar comments as above can be made on how the firm problem here differs from other

models of customer and supplier matching. Again, the key mechanisms are that acquisition

efforts of firms respond endogenously to potential partners on the other side of the market;

and that acquisition efforts affect the profits of upstream and downstream partners, though

firms do not internalize this when choosing these efforts.
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We emphasize here that the presence of constant markups does not preclude com-

petition among suppliers. As seen through Equation 11, when firms choose their supplier

acquisition effort, they consider how the output price they offer compares to the input cost

of their customers. In other words, how their output price compares to the output prices

offered by other suppliers. This informs their decision to reduce their marginal cost through

acquiring suppliers. Firms in this setting compete with eachother through prices, but the

channel through which they do this is through the marginal costs they attain rather than

the markups they charge.

3.6 Equilibrium

We now define an equilibrium.

Definition 1 An equilibrium is defined as equilibrium objects:

1. optimal policies
{
ut(z,G,H), vt(z,G,H)

}∞
t=0

2. conjectures about other agents:

(a) acquisition efforts:
{
ũt(z, a), ṽt(z, a)

}∞
t=0

(b) input cost and sales:
{
c̃t(z, a)

}
, s̃t(z

′, a′)
}∞
t=0

(c) customer and supplier sets:
{
H̃z,a,t(z

′, a′), G̃z,a,t(z
′, a′)

}∞
t=0

3. conjectures about aggregate objects:

(a) aggregate price index
{
Pt

}∞
t=0

(b) aggregate income
{
Xt

}∞
t=0

which satisfy the following conditions:

1. Optimal policies solve firm problem 9.

2. Conjectures about customer and supplier sets of other firms are consistent with laws of

motion:

H̃z,a,t = Γh
t

(
ũt(z, a), H̃z,a−1,t−1

)
, G̃z,a,t(z

′, a′) = Γg
t

(
ṽt(z, a), G̃z,a−1,t−1

)
3. Conjectures about acquisition efforts of other firms are consistent with optimal policies:

ũt(z, a) = ut(z, G̃z,a−1,t−1, H̃z,a−1,t−1), ṽt(z, a) = vt(z, G̃z,a−1,t−1, H̃z,a−1,t−1)
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4. Conjectures about input costs and sales are consistent with customer and supplier sets:

c̃t(z, a) = ct(G̃z,a,t), s̃t(z, a) = st

(
z, G̃z,a,t, H̃z,a,t

)
5. Conjectures about aggregate objects are consistent with optimal policies:

Pt =

(∫ (
µz(i)−1ct(Git)

1−α
)1−σ

di

)1/(1−σ)

, Xt = 1 +
µ− 1

µ

∫
st (z(i), Git, Hit) di

We now define a stationary equilibrium. For the remainder of this paper, we will focus on

stationary equilibria.

Definition 2 A stationary equilibrium is defined as an equilibrium in which equilibrium

objects are time-independent.

Even in a static setting, solving for equilibria in endogenous network models is a com-

plicated problem. A firm’s choice to form links depends on payoff-relevant attributes of

potential trading partners. However, these attributes of trading partners depend themselves

on the attributes of their own trading partners. Thus in equilibrium, one needs to solve for

two fixed points. First, a fixed point in payoff-relevant attributes, as the attributes of a firm

depend on the attributes of its partners. Second, a fixed point in the link formation choices

of firms, as the link formation choices depend on the attributes of potential trading part-

ners. The endogenous production network literature has made progress here by considering

environments in which these fixed points can be easily characterized and solved for.

Our setting further complicates this problem by introducing dynamics in customer

and supplier networks. As in the static setting, a firm’s decision to form links depends

on the payoff-relevant attributes of potential trading partners. However, as trading partners

themselves acquire customers and suppliers over the lifecycle, their payoff-relevant attributes

evolve over time. Furthermore as the payoff-relevant attributes of trading partners depend

on the attributes of their own trading partners, the evolution of their attributes depends on

how their trading partners’ attributes evolve over time. Again in equilibrium, we need to

find a fixed-point in attributes and a fixed point in link formation choices, but here as firms

evolve over time, it cannot be a fixed point in attributes and choices of individual firms.

Instead, given the acquisition technology, we need to find a state space such that all firms in

the same state have the same attributes and make the same choices. Then in equilibrium,

we find fixed points in the attributes and choices of different states. The assumptions we

make provide a state, (z, a), such that these fixed points can be easily characterized and
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solved for.4

3.7 Model Output: Lifecycle Patterns

In Figure 7 we plot lifecycle trajectories from the calibrated version of the model. We

discuss the calibration procedure in the next section, but for now we point out the fact

that the model is able to generate the patterns we observe in the data. Older firms have

more customers and suppliers, lower output prices and input costs, and greater sales and

intermediate expenditure.

Figure 7: Model Output

Note: We plot lifecycle trajectories of firms in the calibrated model. Our calibration strategy is described
in Section 4. In the calibrated model, there are two productivity types.

The fact that the model is able to generate these patterns should not be very surprising.

The assumption of a convex acquisition cost implies that firms slowly acquire customers and

suppliers over the lifecycle, rather than jumping immediately to a steady-state set. The

patterns look similar to output one would get from any “customer capital” model. However,

a key difference here is that firms in our setting are embedded in an endogenous network.

Thus, the acquisition choices they make will have important implications for their upstream

and downstream partners, and the structure of the production network. The usefulness of

our framework is in studying these implications.

4In Appendix B.1, I describe the exact solution method.

26



4 Structural Estimation

In this section, we estimate the structural parameters of our model using simulated method

of moments. The goal is to use the model to quantitatively study how customer and supplier

acquisition shapes aggregate productivity.

We first impose functional forms. We assume a standard form for the acquisition cost:

φg(v) =
ξ

ζ
vζ , φh(u) =

ξ

ζ
uζ

The level parameter ξ governs the level of costs, while the curvature parameter ζ governs

how easily firms can scale their customer and supplier networks. We impose that the level

and curvature parameters are the same for both customer and supplier acquisition.

We assume that the permanent productivity of a firm can take two values. Upon entry,

a firm draws a productivity of 1 with probability plow, and draws a permanent productivity

of z̄ > 1 with probability (1− plow)

F (z) =

1 with prob. plow

z̄ with prob. (1− plow)

Finally, we assume that the aggregate matching function is Cobb-Douglas, where γ governs

the elasticity of matches with respect to customer acquisition.

M (U ,V) = UγV1−γ

This results in nine parameters which require estimation. The model parameters are

listed in Table 1. Most of these parameters are common to many models and so are calibrated

in standard ways. The two which are less common are the level of acquisition cost and

curvature of acquisition cost. We start by discussing how these parameters affect equilibrium

objects in our setting. This will inform our strategy for estimating them.

4.1 How do acquisition costs affect equilibrium objects?

We first explore the role of the level parameter ξ. Proposition 1 states that changing the

level parameter from ξ0 to ξ1 uniformly scales equilibrium acquisition efforts of firms by a

factor
(

ξ1
ξ0

)−1/ζ

. As a result, the equilibrium sales, input costs, number of customers, and

number of suppliers all scale by constant factors. However, as all firms scale by the same

factor, there are no changes in patterns across the lifecycle nor across the cross-section of
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Table 1: Model Parameters

Parameter Description
α labor share
σ elasticity of substitution
γ matching function elasticity
β exogenous firm survival rate
δ exogenous separation rate

zhigh productivity of high type
plow probability of low type
ξ level of acquisition cost
ζ curvature of acquisition cost

firms. In our calibration, we will normalize the level parameter to ξ = 1, understanding

that we can use Proposition 1 to calculate how the level of aggregate objects would differ

for alternative values of ξ.

Proposition 1 Suppose acquisition policies in an equilibrium with acquisition cost φ0(x) =
ξ0
ζ
xζ are given by:

u(z,H−1, G−1), v(z,H−1, G−1)

In an equilibrium with cost function φ1(x) =
ξ1
ζ
xζ (holding all other parameters fixed), equi-

librium acquisition policies are given given by:(
ξ1
ξ0

)−1/ζ

u(z,H−1, G−1),

(
ξ1
ξ0

)−1/ζ

v(z,H−1, G−1)

Next, we explore the role of the curvature paramameter ζ. Taking the ratio of first

order conditions (i.e. Equation 10) for two firms i and i′, we can express their relative

customer acquisition efforts in Equation 12:

ui,t
ui′,t

=

 µ−1
µ

∑∞
s=0

∑
z′,a′((1− δ)β)s

(
µc(Gi,t+s)

1−α

zic̃(z′,a′+s)

)1−σ
1−α
µ s̃(z′, a′ + s)M(U,V)

U
ṽ(z′,a′)n(z′,a′)

V

µ−1
µ

∑∞
s=0

∑
z′,a′((1− δ)β)s

(
µc(Gi′,t+s)

1−α

zi′ c̃(z
′,a′+s)

)1−σ
1−α
µ s̃(z′, a′ + s)M(U,V)

U
ṽ(z′,a′)n(z′,a′)

V


1

ζ−1

(12)

The relative acquisition efforts of firms i and i′ depends on the ratio of expected profits

generated from matching with additional customers. Notice the only difference in customer

acquisition effort across firms arise from differences in marginal cost. Firms who expect to

have lower marginal costs today and in the future exert more effort in acquiring customers,

as conditional on matching with a customer, they sell more. The curvature of the cost

function, ζ, governs the elasticity between marginal costs and acquisition efforts. When ζ is

low, small differences in marginal costs lead to large differences in acquisition effort. On the
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other hand, when ζ is high, all firms similar acquisition choices despite large differences in

marginal costs. In other words, ζ governs the extent to which acquisition effort responds to

technical advantages.

As ζ governs the elasticity between marginal costs and customer acquisition effort,

it also governs the correlation between number of customers and sales. When ζ is low,

firms with different marginal costs, and thus different average sales, will make very different

acquisition choices, and thus have very different numbers of customers. This generates a

high correlation between the number of customers a firm has and its sales. On the other

hand, when ζ is high, firms with different marginal costs, and thus different average sales,

will make very similar acquisition choices, and thus have very similar numbers of customers.

This generates a low correlation between the number of customers a firm has and its sales.

Thus, we use the correlation between number of customer and sales to calibrate the curvature

parameter. Furthermore, an advantage of using this moment is that it has been reported for

other countries. In particular, Arkolakis et al. (2023) use the same moment to calibrate an

acquisition cost curvature using data from Chile. In Section 6, we will use this moment to

study how differences in acquisition technology shape differences in aggregate productivity.

4.2 Estimation Procedure

We assign existing estimates to a subset of our parameters. We use the labor share from the

2019 Penn World Table to set α = 0.52. We set σ = 4.30, referring to Baqaee et al. (2023).

We set γ = 0.5, which is in line with Krolikowski and McCallum (2021).

The remaining parameters are jointly estimated to match moments in our firm-to-

firm data. Though all parameters are jointly estimated, there exists an intuitive mapping

between the parameters and target moments. We set exogenous survival rate β = 0.66 to

match the 1-year exit rate of sellers. We set exogenous separation rate δ = 0.32 to match the

1-year survival rate of connections. As discussed in Section 4.1, we normalize ξ such that the

average number of customers is equal to 1, and estimate ζ by targeting the elasticity between

number of customers and sales. In particular, we compute this elasticity by 4-digit HSN and

use the average across HSNs. This moment in our data is 0.36. Finally, we estimate the

productivity of the high type z̄ and probability of drawing the low type plow by targeting

the interquartile range and skewness of log sales. Again, we compute these by 4-digit HSN

and use the average across HSNs.

We summarize our estimation results in Table 2. We match all moments well.
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Table 2: Estimation Results

Parameter Value Target Target Moment Model Moment
α 0.52 Penn World Table 2019 - -
σ 4.30 Baqaee et al. (2023) - -
γ 0.50 Krolikowski and McCallum (2021) - -
β 0.66 1-year exit rate 0.33 0.33
δ 0.32 1-year survival rate of connections 0.45 0.45
z̄ 2.08 IQR of log sales 2.99 2.98
plow 0.59 skewness of log sales 0.39 0.39
ξ 0.59 normalization (average NC = 1) - -
ζ 3.10 elasticity between NC and Sales 0.36 0.36

4.3 Firm Dynamics in a Network Model

Before studying our main research questions, we briefly discuss how acquisition choices of

firms interact through the network to shape firm dynamics. This differentiates our setting

from the “customer capital” literature.

As noted in Section 3.7, the calibrated model generates the lifecycle patterns we observe

in the data. Older firms have more customers and suppliers, greater sales and intermediate

expenditure, and lower output prices and input costs. However as firms are embedded in a

network here, the growth in their sales and the decline in their input costs no longer depend

just on their own acquisition choices. As a firm’s customer itself acquires more customers,

it shifts out its sales and so also its demand for intermediates. This leads to the customer

buying more intermediate from the firm. At the same time, as a firm’s customer acquires

more suppliers, the firm becomes less competitive relative to the customer’s supplier network.

This leads to the customer spending a lower share of intermediate expenditure on the firm.

Finally, as a firm’s supplier acquires more suppliers, it reduces its marginal cost and passes

this cost reduction onto the firm. Thus, the dynamics of firm sales and input costs depend not

only on the firm’s acquisition decisions, but also on the acquisition decisions of its customers

and suppliers.

In Figure 8, we decompose lifecycle dynamics into an “own growth” channel and a

“partner growth” channel. Specifically, we plot counterfactual trajectories for a case in which

firms make the same acquisition choices and draw partners from the same distribution, but

after matching with a partner, the partner no longer evolves over time. The counterfactual

trajectories are plotted in the dashed lines in the figure, while the solid lines correspond to

the equilibrium trajectories in Figure 7. In the static partner counterfactual, the decline

in input costs is 11% lower for high productivity firms and 12% lower for low productivity

firms. Furthermore, sales growth for high productivity firms is 4% lower, while it is 8% lower
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for low productivity firms. Figure 8 highlights an important mechanism which shapes firm

dynamics in network models. A firm’s growth in a network depends on its own choices, but

also on the choices of its trading partners.

Figure 8: Dynamics Contribution of Trading Partners

Note: We decompose lifecycle trajectories into an “own growth” channel and a “partner growth” channel.
The solid lines correspond to the equilibrium trajectories. The dashed lines correspond to counterfactuals in
which firms make the same acquisition efforts and draw from the partners from the same distribution, but
partners no longer evolve over time after matching.

5 Efficiency

In this section, we study the normative properties of our environment. We find that the

decentralized equilibrium is inefficient as firms fail to internalize vertical externalities and

search externalities. First, we describe the problem of a planner who chooses production

choices for firms, taking the production network as given. Next, we describe the full problem

of a planner who chooses both production and acquisition choices for firms, imposing that

the planner must use the same acquisition technology as firms in the decentralized econ-

omy. Proceeding in this manner helps distinguish inefficiencies which arise in exogenous

network models from those that arise in endogenous network models. We find inefficient

production and acquisition choices generate quantitatively large aggregate losses. Aggregate

productivity in the efficient allocation is 16% greater than in the decentralized equilibrium.

Furthermore, changes in allocative efficiency will be central for understanding how technol-
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ogy differences map to productivity differences, as will be discussed in Section 6.

5.1 Efficiency of Exogenous Network Equilibrium

We first study the problem of a planner who chooses production choices for firms, taking

the production network as given. The exogenous network can be described as a collection

of customer and supplier sets {Hz,a, Gz,a}z,a. The problem of the planner is to choose con-

sumption of varieties, d(z, a), labor input of firms, l(z, a), and intermediate inputs of firms,

ν(z, a, z′, a′), to maximize aggregate consumption. Here, ν(z, a, z′, a′), denotes the quantity

of a (z′, a′) variety a (z, a) firm uses. The planner’s choices are subject to firm output and

aggregate labor constraints.

max
d,l,ν

(∑
z,a

d(z, a)
σ−1
σ n(z, a)

) σ
σ−1

s.t. d(z, a) +
∑
z′,a′

ν(z′, a′, z, a)Hz,a(z
′, a′) ≤ y(z, a) ∀z, a

∑
l(z, a)n(z, a) ≤ L

y(z, a) = κzl(z, a)α

∑
z′,a′

ν(z, a, z′, a′)(σ−1)/σGz,a(z
′, a′)


σ(1−α)
σ−1

{Hz,a, Gz,a}z,a Given

The first constraint imposes that the sum of final consumption of a variety and usage

of it by other firms in production must be less than the output of that variety. The second

constraint imposes that aggregate labor input must be less than aggregate labor supply.

To test whether the decentralized equilibrium is efficient, we can compare the decen-

tralized choices to the choices which satisfy the planner’s first order condition. In the case

the decentralized equilibrium is efficient, these two choices will coincide. We find that the

decentralized choices for consumption and labor input match the planner’s choices, however

intermediate input usage does not. In Equation 13, we express the decentralized firm’s in-

put demand. In Equation 14, we express the choice which satisfies the planner’s first order

condition.
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ν(z, a, z′, a′) =

(
µc(z′, a′)1−α

z′

)−σ

c(z, a)σ−11− α

µ
s(z, a) (13)

ν(z, a, z′, a′) = µσ

(
µc(z′, a′)1−α

z′

)−σ

c(z, a)σ−11− α

µ
s(z, a) (14)

Comparing the planner’s choice to the decentralized choice, we see that the two di-

verge. Firms in the decentralized equilibrium underutilize intermediate inputs relative to

the planner’s allocation. The reason for this inefficiency is that firms fail to internalize a

“vertical externality” and set prices inefficiently high (multiple marginalization). The price

a supplier charges its customer affects the customer’s marginal cost and thus the customer’s

profit. However the supplier does not take this into account when setting its price. In ad-

dition, the price the customer charges its own customers affects its demand, and thus the

demand and profits of the supplier. However, again, the customer does not take this into

account when setting its price. As a result, in equilibrium, the price for intermediate inputs

is set inefficiently high and firms underutilize intermediate inputs.

It is useful to compare the setting here to a similar setting which lacks intermediate

input usage. Suppose firms still sell to the household, but no longer sell to other firms nor

use intermediate inputs. If labor supply is inelastic, then this modified setting is efficient.

Constant markups preclude distortions between firms. The inelasticity of labor supply pre-

cludes the option of underproduction. In contrast, in the exogenous network setting, firms

underproduce due to underutilization of intermediate inputs. The point is that market power

is not enough in this setting to generate inefficiency. This inefficiency requires both market

power and intermediation chains.

5.2 Efficiency of Endogenous Network Equilibrium

We next study the efficiency of an endogenous network equilibrium. As in the exogenous

network problem, the planner chooses consumption of varieties d(z, a), labor input l(z, a),

and intermediate inputs ν(z, a, z′, a′), to maximize aggregate consumption. In addition,

the planner also chooses customer acquisition effort u(z, a), and supplier acquisition effort

v(z, a). The production network then arises out of the same acquisition technology as in the

decentralized equilibrium. Again, we can describe the network as a collection of customer

and supplier sets {Hz,a, Gz,a}z,a. However, here, these sets are endogenous objects which

arise out of the planner’s acquisition efforts.
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max
d,l,ν,u,v

(∑
z,a

d(z, a)
σ−1
σ n(z, a)

) σ
σ−1

d(z, a) +
∑
z′,a′

νz′,a′(z, a)Hz,a(z
′, a′) ≤ y(z, a) ∀z, a

∑
z,a

l(z, a)n(z, a) +
∑
z,a

φh(u(z, a))n(z, a) +
∑
z,a

φg(v(z, a))n(z, a) ≤ L

y(z, a) = κzl(z, a)α

(∑
z′,a′

ν(z, a, z′, a′)(σ−1)/σGz,a(z
′, a′)

)σ(1−α)
σ−1

Hz,a(z
′, a′) = u(z, a)

M (U ,V)
U

v(z′, a′)n(z′, a′)

V
+ (1− δ)Hz,a−1(z

′, a′ − 1) ∀z, a, z′, a′

Gz,a(z
′, a′) = v(z, a)

M (U ,V)
V

u(z′, a′)n(z′, a′)

U
+ (1− δ)Gz,a−1(z

′, a′ − 1) ∀z, a, z′, a′

The first constraint imposes that the sum of final consumption of a variety and usage

of it by other firms in production must be less than the output of that variety. The second

constraint imposes that aggregate labor input must be less than aggregate labor supply.

Different from the exogenous network problem, however, here aggregate labor input is the

sum of labor used for production and labor used for acquisition. The third constraint is just

the production function of the firm. The last two constraints impose that the planner uses

the same acquisition technology as firms in the decentralized equilibrium.

The planner’s first order conditions with respect to consumption, labor input, and

intermediate input usage are identical to the exogenous network problem, so we omit further

discussion, and instead focus on the first order conditions with respect to customer and

supplier acquisition. Let λ(z, a) denote the shadow value of a (z, a) variety and W denote

the shadow wage. The planner’s choice for customer acquisition effort u(ẑ, â) is given by:
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∑
z,a

∞∑
s=0

(1−δ)s
(
λ(z, a+ s)

∂y(z, a+ s)

∂Gz,a+s(ẑ, â+ s)
v(z, a)n(ẑ, â)− λ(ẑ, â+ s)ν(z, a+ s, ẑ, â+ s)v(z, a)n(z, a)

)
M (U ,V)

UV

+
∂M(U,V)

U
∂u(ẑ, â)

1
M(U,V)

U

[Γ1 − Γ2] =W
∂φh(u(ẑ, â))

∂u(ẑ, â)
n(ẑ, â)

Γ1 =
∑
z,a

∑
z′,a′

λ(z, a)
∂y(z, a)

∂Gz,a(z′, a′)
Gz,a(z

′, a′)

Γ2 =
∑
z,a

∑
z′,a′

λ(z, a)ν(z′, a′, z, a)Hz,a(z
′, a′)

The first term on the left is the marginal surplus generated by a (ẑ, â) firm connecting with

more customers. This term is equal to the increase in customers’ output due to adding a

(ẑ, â) supplier, multiplied by the value of that output, minus the value of (ẑ, â) output used

in production by the customers. The second term on the left is the marginal effect firm (ẑ, â)

has on all other matches through congestion in the matching function. The planner equates

the sum of these two terms to the marginal cost of acquisition, which is the the term on the

right.

The planner’s choice for supplier acquisition effort v(ẑ, â) is given by:

∑
z,a

∞∑
s=0

(1−δ)s
(
λ(ẑ, â+ s)

∂y(ẑ, â+ s)

∂Gẑ,â+s(z, a+ s)
u(z, a)n(z, a)− λ(z, a+ s)ν(ẑ, â+ s, z, a+ s)u(z, a)n(ẑ, â)

)
M (U ,V)

UV

+
∂M(U,V)

V
∂v(ẑ, â)

1
M(U,V)

V

[Γ1 − Γ2] =W
∂φg(v(ẑ, â))

∂v(ẑ, â)
n(ẑ, â)

The first term on the left is the marginal surplus generated by a firm (ẑ, â) connecting with

more suppliers. This term is equal to the increase in firm (ẑ, â)’s output due to adding sup-

pliers, multiplied by the value of that output, minus the value of the additional intermediate

inputs firm (ẑ,â) now uses. The second term on the left is the marginal effect firm (ẑ, â) has

on all matches through congestion in the matching function. The planner equates the sum

of these two terms to the marginal cost of acquisition, which is the the term on the right.

As before, to test whether decentralized acquisition effort is efficient, we can compare

the decentralized choice to the choice which satisfies the planner’s first order condition. In

the case the decentralized choice is efficient, the two will coincide. In Equation 15, we express

the decentralized customer acquisition effort for a (z, a) firm. In Equation 16, we express

the acquisition effort which satisfies the planner’s first order condition.
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µ− 1

µ

∞∑
τ=0

∑
z′,a′

((1−δ)β)τ
(
µc(z, a+ τ)1−α

zc(z′, a′ + τ)

)1−σ
1− α

µ
s(z′, a′+τ)

M (U ,V)
U

v(z′, a′)n(z′, a′)

V
=
∂φh(u)

∂u
(15)

µ2 − 1

µ

∑
z′,a′

∞∑
τ=0

((1− δ)β)τ
(
µc(z, a+ τ)1−α

zc(z′, a′ + τ)

)1−σ
1− α

µ
s(z′, a′ + τ)

M (U ,V)
U

v(z′, a′)n(z′, a′)

V

+
∂M(U,V)

U
∂u

1
M(U,V)

U

P
µ
[Γ1 − Γ2] =

∂φh(u)

∂u
(16)

In Equation 17, we express the decentralized supplier acquisition effort for a (z, a) firm.

In Equation 18, we express the acquisition effort which satisfies the planner’s first order

condition.

µ− 1

µ

∞∑
τ=0

∑
z′,a′

((1−δ)β)τ
(
µc(z′, a′ + τ)1−α

z′c(z, a+ τ)

)1−σ

(1−α)s(z, a+τ)M (U ,V)
V

u(z′, a′)n(z′, a′)

U
=
∂φg(v)

∂v
(17)

µ2 − 1

µ2

∑
z′,a′

∞∑
τ=0

((1− δ)β)τ
(
µc(z′, a′ + τ)1−α

z′c(z, a+ τ)

)1−σ

(1− α)s(z, a+ τ)
M (U ,V)

V
u(z′, a′)n(z′, a′)

U

+
∂M(U,V)

V
∂V

1
M(U,V)

V

P
µ
[Γ1 − Γ2] =

∂φg(v)

∂v
(18)

The planner’s optimal choices differs from the decentralized firm’s for two reasons.

First, the planner internalizes congestion externalities which arise through the matching

function. This is the second term on the left in Equations 16 and 18. The planner un-

derstands that a (z, a) firm’s customer acquisition effort affects matching probabilities for

other firms searching for customers, and takes this into account when choosing acquisition

effort for the firm. Similarly, the planner understands that a (z, a) firm’s supplier acquisition

effort affects matching probabilities for other firms searching for suppliers, and takes this

into account when choosing acquisition effort for the firm.

Secondly, firms in the decentralized equilibrium fail to internalize a vertical external-

ity5. When a decentralized firm exerts more acquisition effort, this creates more matches.

These matches generate surplus for the firm, but also generate surplus for the partners it

5Though we label this externality a “vertical” externality, there are other labels which have been used for
it. In the labor literature, this externality has been labeled “thickness” and “composition” externalities. In
some of the endogenous network literature, this externality has been labeled the “match creation” externality.
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matches with. However, decentralized firms only internalize their private surplus, while the

planner internalizes joint surplus. The vertical externality can be seen in the first term on

the left when comparing Equations 15 and 16, and when comparing Equations 17 and 18.

In the case the congestion and vertical externalities exactly offset eachother for all firms

in the decentralized equilibrium, the decentralized acquisition efforts are efficient. However

under the decentralized surplus-splitting protocol, this does not happen and so acquisition

efforts are inefficient.

5.3 Efficient Allocation

We discuss the efficient allocation in this section. We find large productivity losses from

inefficient production and acquisition choices. Aggregate productivity is 16% greater in the

efficient allocation, relative to the decentralized equilibrium.

In Figure 9, we compare efficient supplier acquisition to decentralized supplier acquisi-

tion. The left panel displays acquisition efforts. All firms exert too much effort in acquiring

suppliers. This is especially true for low-productivity firms. While acquisition effort in the

efficent allocation is roughly 20% lower for high-productivity firms, low-productivity firms

in the efficient allocation almost entirely stop acquiring suppliers. The results of these ac-

quisition efforts are shown in the right panel, which displays the trajectories for number

of suppliers over the lifecycle. The trajectory for high-productivity firms remains largely

unchanged, while low-productivity firms in the efficient allocation have virtually no suppli-

ers. Notice, despite exerting less effort in acquiring customers in the efficient allocation,

high-productivity firms maintain the same number of suppliers. This is because there is

less congestion in matching due to reduced acquisition efforts of firms, especially of low-

productivity firms.

In Figure 10, we compare efficient customer acquisition to decentralized customer ac-

quisition. The left panel displays acquisition efforts. The magnitude of acquisition effort for

high-productivity firms is roughly similar, however young firms in the decentralized equilib-

rium exert relatively more acquisition effort than the efficient level. This difference reflects

the fact that the planner’s acquisition efforts are more correlated with the marginal costs of

firms, which decline over time. Again, low-productivity firms almost entirely stop acquiring

customers. The results of these efforts are displayed in the right panel, which displays tra-

jectories for number of customers over the lifecycle. The trajectory of number of customers

for high-productivity firms in the efficient allocation is similar to the decentralized trajec-

tory. Low-productivity firms, on the other hand, have virtually no customers in the efficient

allocation.
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Figure 9: Efficient Supplier Acquisition

Note: The left panel displays the decentralized equilibrium supplier acquisition efforts and the efficient
acquisition efforts. The right panel plots the lifecycle trajectories of number of suppliers for firms in the
decentralized equilibrium and the efficient allocation.

The efficient acquisition efforts give rise to the efficient production network. In Figure

11, we compare the efficient network to the decentralized network. We plot the difference in

the share of connections between given supplier-customer pairs. The horizontal axis displays

the type of the supplier, with the left half corresponding low-productivity suppliers of various

ages, and the right half corresponding to high-productivity suppliers. The vertical axis

displays the type of the customer, with the bottom half corresponding to low-productivity

customers, and the top half corresponding to high-productivity customers. For each gridpoint

in the figure, a positive value indicates that the efficient network has a greater share of

connections between these types, while a negative value indicates that the efficient network

has a lesser share. The efficient network has a greater share of connections between high-

productivity suppliers and high-productivity customers.

Finally, in Figure 12, we compare the efficient input choices to the decentralized choices.

In the left panel, we display labor input choices. Low-productivity firms in the efficient

allocation use significantly less labor input as they shrink in size. On the other hand, high-

productivity firms use significantly more labor in the efficient allocation. Part of this increase

comes from labor being reallocated away from low-productivity firms, however this does not

explain the entire increase. As firms exert less acquisition effort overall in the efficient
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Figure 10: Efficient Customer Acquisition

Note: The left panel displays the decentralized equilibrium customer acquisition efforts and the efficient
acquisition efforts. The right panel plots the lifecycle trajectories of number of customers for firms in the
decentralized equilibrium and the efficient allocation.

allocation, there is more labor available for production. In particular, whereas 86% of labor

is used in production in the decentralized equilibrium, 92% of labor is used in production

in the efficient allocation. This increase in the labor available for production is used by

high-productivity firms.

In the right panel, we display the quantity of intermediate input used. In the effi-

cient allocation, high-productivity firms use significantly more intermediate input. First,

the efficient allocation lacks a distortion from multiple marginalization. In addition, high-

productivity firms, despite having similar numbers of customers and suppliers, are matched

on average with higher productivity partners. On the other hand, intermediate input usage

falls for low-productivity firms. Despite the lack of a distortion from multiple marginaliza-

tion and being matched with higher productivity partners on average, the steep reduction

in their number of partners leads to a fall in their intermediate input usage.

We find large aggregate productivity differences between the efficient allocation and

the decentralized equilibrium. Final output is 16% greater in the efficient allocation. As the

stock of labor is inelastic here, this gain entirely reflects an increase in productivity stemming

from the better coordination of acquisition and production choices.
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Figure 11: Efficient Network vs. Decentralized Network

Note: We plot the difference between the decentralized production network and the efficient production net-
work. The horizontal axis corresponds to low-productivity (left half) and high-productivity (right half) sup-
pliers of varying ages. The vertical axis corresponds to low-productivity (bottom half) and high-productivity
(top half) customers of varying ages. Each gridpoint displays the difference between the share of connections
between the corresponding types in the efficient allocation and the decentralized equilibrium. A positive
value indicates that the efficient network has a greater share of connections between the corresponding
types, while a negative value indicates that the efficient network has a lesser share.

6 Acquisition Technology and Aggregate Productivity

In this section, we study how differences in acquisition technology map to aggregate produc-

tivity differences. In our model, the acquisition technology is governed by the parameters of

the acquisition cost. Thus, we study comparative statics with these parameters.

We begin by studying the role of the curvature of acquisition costs ζ. As discussed in

Section 4.1, ζ is disciplined by the elasticity between number of customers and sales. This

moment, however, is also reported in Arkolakis et al. (2023) for Chile. Arkolakis et al. (2023)

estimate this elasticity to be 0.42 in Chile6, compared to the elasticity of 0.36 we find in

India. Through the lens of our model, these moments imply that Chilean firms are able to

scale their customer and supplier networks more easily than Indian firms.

In a counterfactual exercise, we recalibrate ζ to match the Chilean moment. So that

the total number of connections remain constant, we also adjust the level of acquisition costs.

All other parameters are held fixed. The counterfactual calibration is summarized in Table

6Again, similar to our moment, this is an average across sectors.
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Figure 12: Efficient Inputs

Note: The left panel plots the lifecycle trajectories of labor input for firms in the decentralized equilibrium
and the efficient allocation. The right panel plots the lifecycle trajectories of intermediate input for firms in
the decentralized equilibrium and the efficient allocation.

3. The elasticity between number of customers and sales implies ζ = 2.50 in Chile, compared

to ζ = 3.10 in India. This estimate of 2.50 is is similar to the (average) curvature estimated

in Arkolakis et al. (2023).

Table 3: Chile ζ Counterfactual

Parameter India Parameter Chile Parameter Target India Moment Chile Moment
α 0.52 0.52 Penn World Table 2019 - -
σ 4.30 4.30 Baqaee et al. (2023) - -
γ 0.50 0.50 Krolikowski and McCallum (2021) - -
β 0.66 0.66 1-year exit rate 0.33 0.33
δ 0.32 0.32 1-year survival rate of connections 0.45 0.45

zhigh 2.08 2.08 IQR of log sales 2.98 3.21
plow 0.59 0.59 skewness of log sales 0.39 0.40
ξ 0.59 0.41 normalization (average NC = 1) - -
ζ 3.10 2.50 Elasticity between NC and Sales 0.36 0.42

In Figure 13, we compare the lifecycle trajectories of firms in the Chilean counterfactual

to lifecycle trajectories of firms in India. As can be seen in the top right panel of Figure

13, high-productivity firms enter with a greater number of customers and grow to larger

steady state in the counterfactual economy, while low-productivity firms enter with fewer

customers and grow to a smaller steady state. Similarly, the top left panel reveals that

high-productivity firms in the counterfactual economy enter with more suppliers and grow
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to larger steady state, while low-productivity firms enter with fewer suppliers and grow to a

smaller steady state. As discussed in Section 4.1, ζ governs the elasticity between marginal

cost and customer acquisition effort. As ζ is lower in Chile, differences in marginal costs

generate larger differences in customer acquisition effort. A similar mechanism has analogous

effects on supplier acquisition effort. As a result, high productivity firms expand relative to

low productivity firms in the counterfactual economy.

Figure 13: Lifecycle Trajectories of Chilean Firms

Note: We plot lifecycle trajectories for firms in our baseline economy, and for firms in the counterfactual
economy calibrated to match the Chilean moment.

As firms here are embedded in a network, their acquisition choices will have important

implications for the production network. In Figure 14, we document how the structure of

the production network in the counterfactual economy differs from the baseline. The fig-

ure plots the difference in the share of connections between given supplier-customer pairs.

The horizontal axis displays the type of the supplier, with the left half corresponding low-

productivity suppliers of various ages, and the right half corresponding to high-productivity

suppliers. The vertical axis displays the type of the customer, with the bottom half corre-

sponding to low-productivity customers, and the top half corresponding to high-productivity

customers. For each gridpoint in the figure, a positive value indicates that the counterfac-

tual network has a greater share of connections between these types, while a negative value

indicates that the counterfactual network has a lesser share. The counterfactual network has

a greater share of connections between high-productivity suppliers and high-productivity
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customers, and a lesser share between all other pairs. The greater dispersion between high

and low-productivity firms in acquisition choices generates a network in which connections

are more concentrated in high-productivity supplier-customer pairs.

Figure 14: Production Network of Chile vs. India

Note: We plot the difference between the production network in the baseline economy and the network in
the counterfactual economy calibrated to match the Chilean moment. The horizontal axis corresponds to
low-productivity (left half) and high-productivity (right half) suppliers of varying ages. The vertical axis
corresponds to low-productivity (bottom half) and high-productivity (top half) customers of varying ages.
Each gridpoint displays the difference between the share of connections between the corresponding types in
the counterfactual economy and the baseline economy. A positive value indicates that the counterfactual
economy has a greater share connections between the corresponding types, while a negative value indicates
that the counterfactual economy has a lesser share.

The acquisition choices of firms and the production network determine the sales and

input costs of firms. In the bottom right panel of Figure 13, we show that input costs fall

for both high-productivity and low-productivity firms in the Chilean counterfactual. The

decline in input costs for high-productivity firms makes sense. High-productivity firms in

the counterfactual economy have more suppliers and are matched with better suppliers on

average. However, the decline in input costs for low-productivity firms is more surprising.

Low-productivity firms realize cost reductions, despite being matched with fewer suppliers,

due to their suppliers being of higher productivity on average. Notice in the counterfactual

economy, not only are firms directly connected to higher productivity suppliers, but now

their suppliers too are connected to higher productivity suppliers. Thus, at every length of

supply chain, firms are connected on average to higher productivity suppliers. Differences in
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acquisition choices of firms are amplified through the network to shape input costs.

The bottom left panel displays equilibrium (nominal) sales for firms. Both low and

high-productivity firms see their sales fall. Low-productivity firms have fewer customers and

are competing with better suppliers, as high-productivity suppliers now make up a greater

share of any given customer’s supplier network. This leads to their sales declining. Sales

also fall for high-productivity firms. Despite the fact high-productivity firms have more

customers, they are also competing with better suppliers. This composition effect dominates

a pure number of customers effect.

We find that aggregate productivity in India would be 3.1% greater if Indian firms

could scale trading partners as easily as firms in Chile. As the total number of connections

is held fixed, this difference is due to the production network being more concentrated in

links between high-productivity firms.

As discussed in Section 5, the decentralized equilibrium is inefficient. Thus changes in

technology affect aggregate productivity through affecting both technical efficiency, i.e. pro-

ductivity in the efficient allocation, and allocative efficiency, i.e. distance of the decentralized

allocation from the efficient allocation. In Table 4, we compare aggregate productivity under

the Indian technology and the Chilean technology, for both the decentralized and efficient

allocations. We normalize by aggregate productivity in the Indian decentralized allocation.

The second column displays productivities in the decentralized allocations, while the third

column displays productivities in the efficient allocations. The last column computes the

percentage difference between the efficient and decentralized allocations for each technology.

The last row computes the percentage difference between the two decentralized allocations

and the two efficient allocations.

We find that the productivity differences between the efficient allocations are much

smaller than those between the decentralized allocations. While aggregate productivity in

the Chilean decentralized allocation is 3.1% greater than the Indian decentralized alloca-

tion, aggregate productivity in the Chilean efficient allocation is only 0.6% greater than the

Indian efficient allocation. This implies that most of the productivity gain realized in our

counterfactual comes from an improvement in allocative efficiency, rather than technical ef-

ficiency. Roughly 4/5 of the change in aggregate productivity is due to allocative efficiency,

while 1/5 is due to technical efficiency. In other words, though the efficient frontier does

not shift significantly under the Chilean technology, firms in the decentralized economy are

much closer to the efficient frontier. Aggregate productivity in the efficient allocation is 13%

greater than in the decentralized allocation under the Chilean technology, compared to 16%

under the Indian technology.
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Table 4: Technical vs. Allocative Efficiency

Technology Decentralized Productivity Efficient Productivity % Difference
India 100.0 115.6 15.6
Chile 103.1 116.3 12.9

% Difference 3.1 0.6

Note: This table compares aggregate productivity under the Indian and Chilean technologies. The first
column displays productivity in the decentralized allocations under both technologies. The second column
displays productivity in the efficient allocations under both technologies. We normalize by productivity in
the Indian decentralized allocation. The last column displays the percentage difference between the efficient
and decentralized economies for each technology. The last row displays the difference between the two
decentralized allocations and the two efficient allocations.

Why is the decentralized allocation closer to the efficient frontier under the Chilean

technology? In Figure 15 and Figure 16, we compare the decentralized and efficient acquisi-

tion efforts under both technologies. Under both technologies, the planner achieves aggregate

productivity gains by shutting out low-productivity firms. This leads to production networks

where only high-productivity firms are present. However, under the Chilean technology, as

the curvature of acquisition costs is lower than in India, low-productivity firms make less

acquisition effort and are less present in the decentralized production network. Thus, there

are smaller gains from shutting them out.

Figure 15: Efficient Supplier Acquisition: Chile vs. India

We now turn to the role of the level of acquisition costs ξ. As a corollary of Proposition

1, we derive an expression which relates differences in ζ to differences in aggregate output.

45



Figure 16: Efficient Customer Acquisition: Chile vs. India

Corollary 1 Suppose final output in an equilibrium with acquisition cost φ0(x) =
ξ0
ζ
xζ is:

Y0

Final output in an equilibrium with acquisition cost φ1(x) =
ξ1
ζ
xζ (holding all other parame-

ters fixed) is given by:

Y1
Y0

=

(
ξ1
ξ0

)− 1−α
ζα(σ−1)

Corollary 1 states that changing the level of acquisition costs (holding all other pa-

rameters fixed) results in an output difference which depends on the size of the level change

and model parameters. Furthermore, the elasticity of aggregate output with respect to ξ is

decreasing in the curvature of acquisition costs, ζ, labor share, α, and elasticity of substition,

σ. When ζ is greater, acquisition efforts are less elastic and so respond less to changes in the

level of acquisition costs. When α is greater, intermediates are less important in production.

As a result, gains from variety, generated by changes in ξ, matter less for output. Finally,

when σ is higher, there are less gains from variety and so changes in the number of suppliers

generate smaller changes in output. Using the calibrated parameters for ζ, α, and σ, we find

that a 10% reduction in the level of acquisition costs in India leads to a 1.0% increase in

aggregate output.
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7 Conclusion

In this paper, we study how customer and supplier acquisition affects aggregate productivity

through shaping the production network. Using firm-to-firm transaction data from a large

Indian state, we document that younger firms have fewer customers and suppliers, lower

sales and intermediate expenditures, and higher input costs and output prices. Motivated

by these patterns, we develop a tractable model of endogenous network formation where firms

undertake costly acquisition of customers and suppliers over the lifecycle. We show that the

decentralized equilibrium is inefficient due to the presence of vertical and search externalities,

and that inefficient pricing and acquisition choices lead to quantitatively large aggregate

productivity losses. We use the model to study how differences in acquisition technology

map to aggregate productivity differences. When firms can scale trading partners more

easily, high-productivity firms expand acquisition effort relative to low-productivity firms.

As a result, the production network features a greater share of connections between high-

productivity firms, generating higher aggregate productivity. Improvements in allocative

efficiency play a central role in generating these productivity gains.
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A Empirical Appendix

A.1 Bias of Coefficients under Endogenous Mobility

In estimating firm input costs and output prices, we estimate the following equation:

eij,hsn = ψi,hsn + ϕj,hsn + εij,hsn

For the estimates of ψi,hsn and ϕj,hsn to be unbiased, we require:

E [s′iεij] = 0 ∀i

E
[
d′jεij

]
= 0 ∀j

where S = [s1, s2, ..., sN ] is the seller fixed effects design matrix and D = [d1, d2, ..., dN ]

is the customer fixed effects design matrix. These conditions are also known in the labor

literature as the assumption of exogenous mobility (Abowd et al. (1999)). In this context,

the conditions imply that for every supplier, the average match-specific effect, εij, is zero

across customers; and that for every customer, the average match-specific effect is zero across

suppliers. This requires firms to match in a manner uncorrelated with the match-specific

effects.

Suppose that instead firms match on match-specific effects. For example, suppose

customers take into account both the supplier fixed effect and match-specific effect when

matching with a supplier. In this case, customers match with suppliers that have high

supplier effects or those that have high match-specific effects for them. This means that a

supplier with a lower supplier effect requires a higher match-specific effect to match with a

customer. This selection implies that OLS estimates of low supplier effects will be biased

upwards.

Similarly, suppose suppliers take into account both the customer fixed effect and match-

specific effect when matching with a supplier. In this case, suppliers match with customers

which have high customer effects or those who have high match-specific effects for them.

This means that a customer with a lower customer effect requires a higher match-specific

effect to match with a supplier. This selection implies that OLS estimates of low customer

effects will be biased upwards.

For example suppose customers take into account both the supplier fixed effect and

match-specific effect when choosing to match with a supplier.
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Thus under “enogenous mobility” selection on match specific effects induce an upward

bias on OLS estimates of low fixed effects. OLS estimates attenuate the true disparity

in customer and supplier effects. This implies in the case of “endogenous mobility”, our

estimates underestimate that the true differences in input costs and output prices between

young and old firms.

A.2 Variation in Unit Values

In this section, we decompose variation in unit values. The waybills which comprise our

transaction data also have entries for units and quantities. Examples of units include “boxes”,

“kilograms”, and “bales”. This information is not required by the tax authority, so it is

frequently missing in the waybills.

Let ri,j,hsn,unit,y,m denote the value of sales between supplier i and customer j within

HSN hsn and unit unit in year y and month m. Let qi,j,hsn,unit,y,m denote the corresponding

quantity of good shipped. Here i and j refer, respectively, to the Tax IDs of the customer

and supplier. Different from our main analysis, here HSN hsn refers to an 8-digit category.

This comes at the cost of losing a 60% of our sample, as the Tax Authority only requires

reporting up to the 4-digit level. However, the benefit is that we are able to compute unit

values at a narrower level. Define the unit value supplier i charges customer j in an HSN-

unit-year-month as:

pi,j,hsn,unit,y,m ≡ ri,j,hsn,unit,y,m
qi,j,hsn,unit,y,m

Let p̄hsn,unit,y,m denote the average unit value charged by all suppliers in a given HSN-unit-

year-month.

p̄hsn,unit,y,m ≡ 1

Nhsn,unit,y,m

∑
i,j

pi,j,hsn,unit,y,m

We estimate the following regression equation:

log (pi,j,hsn,unit,y,m − p̄hsn,unit,y,m) = ψi,hsn,unit,y,m + εi,j,hsn,unit,y,m (19)

That is, we project demeaned unit values onto supplier-hsn-unit-year-month fixed effects.

In Table 5 we report R2 values from the estimated model. The estimated model has an R2

of 0.72, implying that most of the variation in unit values can be explained by the supplier

fixed effects. In other words, variation within supplier across customers plays a small role in

explaining the total variation in unit values.

51



Table 5: Model Fit

N R2 Adjusted R2

log (pi,j,hsn,unit,y,m) 2,321,128 0.72 0.69

A.3 Lifecycle Patterns controlling for Firm Size

In Section 2, we document that older firms have more customers and suppliers, greater

sales and intermediate expenditure, and lower input costs and output prices. These lifecycle

patterns are in line with a theory of firm dynamics in which firms slowly grow to their steady-

state size due to frictions in firm-to-firm matching. However, these patterns could also arise

in a model in which the customer and supplier networks of a firm are determined period-by-

period by the firm’s idiosyncratic productivity, combined with a positive correlation between

age and idiosyncratic productivity (e.g. due to survivorship bias or “learning-by-doing”). In

this case, the lifecycle patterns just reflect a positive correlation between age and idiosyn-

cratic productivity, and matching frictions do not play an important role in shaping firm

dynamics. In this section, we repeat the empirical analysis of Section 2, controlling for firm

sales. We find that, controlling for sales, younger firms have fewer customers and lower

output prices. Furthermore, controlling for sales, younger firms have fewer suppliers, higher

input costs, and lesser intermediate expenditure. These patterns suggest that frictions in

firm-to-firm matching play an important role in shaping firm dynamics.

A.3.1 Downstream Facts

In Figure 17, we plot lifecycle patterns of number of customers, controlling for sales. In

particular, we estimate Equation 20 and plot γa, normalizing by the youngest age group.

The normalized estimates express the difference in log number of customers for firms in a

given age category relative to entrants who sell in the same HSN and have the same sales.

In the case that matching frictions do not affect firm dynamics so that number of customers

and sales are just a function of firm productivity, age should not matter, after controlling for

sales. However Figure 17 shows that, conditional on having the same sales, younger firms

have fewer customers.

log (NCi,hsn) =
∑
a

γa1(agei ∈ a) +
∑
h

βhlog (Salesi,hsn)1(hsn = h) +
∑
h

γh1(hsn = h) + εi,hsn (20)

In Figure 18, we plot lifecycle patterns of ψi,hsn from Equation 3, controlling for sales.

In particular, we estimate Equation 21 and plot γa, normalizing by the youngest age group.

The normalized estimates express the difference in ψi,hsn for a given age category relative
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Figure 17: Number of Customers controlling for Sales

Note: We plot estimated age fixed effects, γa, from Equation 20 along with bootstrap standard errors,
normalizing by the youngest age group. The normalized estimates express the difference in log number of
customers (within an HSN) for firms in a given age category relative to entrants who sell products in the
same HSN and have the same sales.

to entrants who sell products in the same HSN and have the same sales. Noting that

ψi,hsn = (1 − σ)log
(

pi,hsn
qi,hsn

)
, Figure 18 shows that, conditional on having the same sales,

younger firms charge lower output prices.

ψi,hsn =
∑
a

γa1(agei ∈ a) +
∑
h

βhlog (Salesi,hsn)1(hsn = h) +
∑
h

γh1(hsn = h) + εi,hsn (21)

Taken together, the lifecycle patterns documented in Figure 17 and Figure 18 imply

that younger firms maintain the same level of sales, despite having fewer customers, due to

charging lower output prices and commanding higher average sales.

A.3.2 Upstream Facts

For each variable of interest yi,hsnu , we estimate the following regression equation:

log (yi,hsnu) =
∑
a

γa1(agei ∈ a) +
∑
g,h

(
βg,hlog (Salesi) + γg,h

)
1(hsnd(i) = g)1(hsnu = h) + εi,hsnu (22)
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Figure 18: ψi,hsn controlling for Sales

Note: We plot estimated age fixed effects, γa, from Equation 21 along with bootstrap standard errors,
normalizing by the youngest age group. The normalized estimates express the difference in ψi,hsn for firms
in a given age category relative to entrants who sell products in the same HSN and have the same sales.

Here, hsnu refers to a 4-digit HSN from which the firm purchases its inputs, i refers

to the firm’s Tax ID, and hsnd(i) refers to the downstream HSN in which the firm sells7.

1(agei ∈ a) is an indicator variable which equals 1 if the age assigned to the Tax ID is in

age category a, 1(hsnd(i) = g) is an indicator variable which equals 1 if the firm sells its

products in the 4-digit HSN category g, and 1(hsnu = h) is an indicator variable which

equals 1 if the firms purchases its inputs from the 4-digit HSN category h.

In Figure 19, we plot lifecycle patterns of number of suppliers and intermediate expen-

ditures, controlling for downstream sales. In particular, we estimate Equation 22 and plot

γa, normalizing by the youngest age group. The normalized estimates express the difference

in log number of suppliers and log intermediate expenditure for firms in a given age category

relative to entrants who purchase inputs from the same upstream HSN, sell in the same

downstream HSN, and have the same downstream sales. In the case that matching frictions

do not affect firm dynamics so that number of suppliers and intermediate expenditures are

just a function of firm productivity, age should not matter, after controlling for sales. How-

ever Figure 19 shows that, conditional on having the same downstream sales, younger firms

7In the data, most firms sell products in multiple HSN categories. We assign hsnd(i) as the HSN which
comprises the greatest share of firm sales. We drop firms for which the greatest HSN category comprises less
than 80% of total firm sales.
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have fewer suppliers and spend less on intermediate expenditures.

Figure 19: Expenditure and Number of Suppliers controlling for Downstream Sales

Note: We plot estimated age fixed effects, γa, from Equation 22 along with bootstrap standard errors,
normalizing by the youngest age group. The normalized estimates express the difference in log number
of suppliers (within an HSN) and log intermediate expenditure (within an HSN) for firms in a given age
category relative to entrants who purchase inputs from the same upstream HSN, sell to the same downstream
HSN, and have the same downstream sales.

In Figure 20, we plot lifecycle patterns of ϕj,hsn from Equation 3, controlling for down-

stream sales. In particular, we estimate Equation 22 and plot γa, normalizing by the youngest

age group. The normalized estimates express the difference in ϕj,hsn for firms in a given

age category relative to entrants who purchase inputs from the same upstream HSN cate-

gory, sell in the same downstream HSN, and have the same downstream sales. Noting that

ϕj,hsn = (σ−1)log (cj,hsn), Figure 20 shows that, conditional on having the same downstream

sales, younger firms face higher input costs.

Summarizing, controlling for sales, younger firms have fewer customers and lower out-

put prices. Furthermore, controlling for sales, younger firms have fewer suppliers, higher

input costs, and lesser intermediate expenditure. These patterns suggest that frictions in

firm-to-firm matching play an important role in shaping firm dynamics.
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Figure 20: ϕj,hsn controlling for Downstream Sales

Note: We plot estimated age fixed effects, γa, from Equation 2 along with bootstrap standard errors,
normalizing by the youngest age group. The normalized estimates express the difference in ϕj,hsn for firms
in a given age category relative to entrants who purchase inputs from the same HSN, sell in the same
downstream HSN, and have the same downstream sales.

B Theoretical Appendix

B.1 Solution Algorithm

In this section, I describe our solution algorithm. A stationary equilibrium is a solution to

6 systems of equations. Equations 23 and 24 are fixed points in payoff-relevant attributes

of firms. Payoff-relevant attributes depend on the structure of the network, as seen through

{Hz,a} and {Gz,a} entering these equations. Equations 25 and 26 are the first order optimal-

ity conditions of customer acquisition effort u(z, a) and supplier acquisition effort v(z, a).

Optimal acquisition efforts of a (z, a) firm depend on its own payoff-relevant attributes,

c(z, a) and s(z, a), and those of other firms, c(z′, a′) and s(z′, a′). Equations 27 and 28 are

laws of motion for customer and supplier networks implied by the acquisition technology.

They depend on the optimal acquisition efforts of firms u(z, a) and v(z, a). I solve for the

solution to these systems of equations using a nonlinear solver in Julia.

s(z, a) =

(
µc(z, a)1−α

zP

)1−σ

X +

∫
Z,A

(
µc(z, a)1−α

zc(z′, a′)

)1−σ
1− α

µ
s(z′, a′)Hz,a(z

′, a′) (23)
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c(z, a) =

(∫
Z,A

(
µc(z′, a′)1−α

z′

)1−σ

Gz,a(z
′, a′)

)1/(1−σ)

(24)

µ− 1

µ

∞∑
τ=0

∑
z′,a′

((1− δ)β)τ
(
µc(z, a+ τ)1−α

zc(z′, a′ + τ)

)1−σ
1− α

µ
s(z′, a′ + τ)

M (U ,V)
U

v(z′, a′)n(z′, a′)

V
=

∂φh(u(z, a))

∂u
(25)

µ− 1

µ

∞∑
τ=0

∑
z′,a′

((1− δ)β)τ
(
µc(z′, a′ + τ)1−α

z′c(z, a+ τ)

)1−σ

(1− α)s(z, a+ τ)
M (U ,V)

V
u(z′, a′)n(z′, a′)

U
=

∂φg(v(z, a))

∂v
(26)

Hz,a(z
′, a′) = u(z, a)

M (U ,V)
U

v(z′, a′)n(z′, a′)

V
+ (1− δ)Hz,a−1(z

′, a′ − 1) (27)

Gz,a(z
′, a′) = v(z, a)

M (U ,V)
V

u(z′, a′)n(z′, a′)

U
+ (1− δ)Gz,a−1(z

′, a′ − 1) (28)
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