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1 Introduction

The intersection of complex supply chains and climate risk presents a critical chal-

lenge to the global economy. Complex supply chains yield significant efficiency gains,

enabling firms to procure inputs from the most efficient suppliers regardless of lo-

cation. Yet, escalating climate risk raises concerns about the vulnerability of inter-

linked production networks and the resultant broader economic fragility (Barrot and

Sauvagnat, 2016; Boehm et al., 2019). Increasing climate change risk globally height-

ens the likelihood of natural disasters such as flooding and storm surges. In response,

forward-looking firms might mitigate the impact of production disruptions through

production location choices (Castro-Vincenzi, 2024) or supplier location diversifica-

tion based on geographic variability in climate threats. Therefore, our understanding

of how climate change may reshape economic production and its implications for wel-

fare across regions hinges on firms’ adaptive sourcing decisions. In this paper, we

provide a theoretical, empirical, and quantitative analysis of the spatial consequences

of supply chain restructuring in light of increased climate risk.

Studying the general equilibrium consequences of how firms structure supply chains

when faced with climate hazards raises two important challenges. First, for empirical

evidence on how firms adapt to climate risk, we need high-frequency data on transac-

tions along the supply chain, the precise locations of establishments, and meaningful

variation in weather-related events. Second, to quantify the broader economy-wide

consequences, we require a general equilibrium model of firm input sourcing under

climate risk, where firms face trade-offs such as the lower probability of climate shocks

against higher costs, less productive inputs, or higher shipping costs.

To address the first issue, we obtain the universe of establishment-to-establishment

level transactions from a large state in India, as long as one node of the transaction

(buyer or seller) is in the state (the other node can be anywhere in the country). The

data contains the precise establishment zip code, the value of the transaction, product

code, date, quantity (and so the unit values), and the unique tax ID of the estab-

lishment. Using these data, we document important new motivating facts suggesting

firms are optimizing supply chains to mitigate climate risk. First, firms diversify the

locations they source from, multisourcing 74% of product value even within narrow

product codes. Second, firms that multisource the same product buy from farther

distances and from drier regions and pay higher prices. And third, suppliers in regions
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that are more exposed to climate risk tend to charge lower prices.

An advantage of our setting is that India experiences monsoonal rainfall that

follows a somewhat predictable spatial pattern every year, although the intensity and

timing can vary. Regions across India regularly experience large flooding events that

disrupt firm supply chains. Firms operating in this environment might reasonably

consider the probability of climate-related disruptions in their operations, as suggested

by our descriptive analysis.

To provide causal evidence of firm responses to climate shocks, we leverage the

exogenous geographic and temporal variation in flooding events using event study

designs. We show that the sales of flood-hit suppliers fall sharply over three months

but recover by five months after a flood. The total purchases and sales of downstream

buyers decrease substantially. Firms recover relatively quickly, and are unlikely to

substitute to other suppliers, in contrast to the supply-chain reorganization docu-

mented by Khanna et al. (2025) following the unanticipated COVID-19 lockdowns.

Our descriptive and event-study results are suggestive that firms plan for climate risk

and face an input-cost vs disruption risk trade-off in setting up supply chains.

Our second contribution is theoretical. To address the challenge of quantifying

economy-wide impacts, we build a new spatial general equilibrium model of firm

sourcing under risk. Motivated by our empirical evidence, firms diversify their sourc-

ing of otherwise-identical inputs across locations to mitigate climate risk. Such diver-

sification comes with a trade-off: in general equilibrium, input prices are higher for

places with lower climate risk, which might also be less productive or geographically

distant, necessitating payment of higher trade costs.

A key feature of the model is that firms’ expected profit functions in the presence

of sourcing risk are concave in input orders. That is, firms behave as if they are

risk-averse, even in the absence of explicit managerial risk aversion.1 This implies

that firms from each region will choose to diversify their input sourcing across regions

if they face imperfectly correlated regional risk, even if regional fundamentals are

constant across space and trade is costly (a “symmetric” economy). In a compara-

tive statics exercise, we show that in this setting, where there is no love-for-variety

trade motive, trade still occurs due to the diversification motives of firms. As a re-

sult, despite identical fundamentals, “safer” regions see higher real wages in general

1Blaum et al. (2024) study firm input sourcing under shipping time risk where firms face a similar
problem. In contrast, our focus is the multi-region general equilibrium.
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equilibrium, while riskier regions see lower real wages.

Interestingly, this comparative statics exercise implies that the prices of inputs,

and therefore, of regional consumption, are higher under costly trade than autarky. A

stark insight from this exercise is that expected regional real wages can be lower under

costly trade than under autarky, but their volatility is also lower. With risk aversion

in consumer preferences, the decrease in volatility offsets the decline in expected real

wages, and diversification is welfare-improving, but aggregate output is lower.

We quantify this model using a census of manufacturing firms across the country,

allowing us to estimate location-specific productivities and labor shares. We imple-

ment the model on 271 regions in India. To discipline the magnitude of disruptions,

we leverage the estimated input disruptions from our event studies.

Our model implies that bilateral sourcing shares are a function of all regional labor

endowments, productivities, and bilateral trade costs, as well as the risk of sourcing in

each region. Given estimates of regional labor, productivity, and bilateral trade costs,

we back out the model-implied spatially correlated regional risk to match observed

sourcing shares. To validate our framework, we project the model-implied risk on

climate observables such as rainfall, floods, temperature and dryness as well as other

risk-related variables such as state fixed effects, ruggedness, and elevation to capture

institutional and geographic features that affect firm decisions.2 We find that climate-

related risk is strongly positively correlated with the estimated risk probabilities, with

an R2 of 0.32. While not causal, the robust positive correlation is consistent with

firms taking into account several sources of risk when they form their supply chains,

a feature that has been largely ignored by the literature (an exception is Kopytov

et al. (2024) who study how supply chains adapt to supplier volatility).3

In contrast to the comparative statics, the effects of firm diversification in a realistic

economy will depend on the variation in fundamentals in addition to risk-mitigation

incentives. Our third contribution is, therefore, quantitative: we compute expected

real wages, real wage volatility, and welfare across districts in our calibrated model,

given model-implied sourcing risk. Our framework implies that as a result of firm

2While these parameters in the model are estimated conditional on productivity, it is well-known
that cross-sectional climate risk, globally, is negatively correlated with productivity. To mitigate
confounding, we also control for regional productivity in the projections.

3In an alternative exercise, we parameterize the regional risk as a function of climate-related
variables and other risk-related variables related to institutional quality and local development and
estimate the relevant parameters. Our quantitative results remain very similar.
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sourcing decisions, real wages in each district will depend on the geography, produc-

tivity, and climate risk of all districts.4

We perform several quantitative exercises in our calibrated model. First, we quan-

tify the insight from our comparative statics exercises regarding wage volatility. We

find that under the estimated trade costs and climate risk, the variance of real wages

is 9.25% higher in autarky. Expected real wages are also higher in autarky. In our

calibrated model, they are, on average, 3.1% higher, although for some districts ex-

pected real wages decline. With log utility, autarky is welfare reducing, with a 7.29%

average welfare decline.

We then study how regional wages change in general equilibrium under alternative

shock probabilities to capture scenarios of changing climate risk, and to highlight

our new channel. We use the correlation of flood, heat, dryness, and precipitation

risk with our estimated district-level risk probabilities to infer how these probabilities

would change given IPCC projections of climate risk. We then compute expected

real wages, input prices, and wage volatility under the scenario of climate evolving as

projected, holding all other long-run changes such as productivity growth constant.

We find that the average risk of districts increases by 1.1p.p., but there is wide

heterogeneity. Expected real wages decline on average by 1.96%, their volatility

increases slightly by an average of 0.15%. Welfare decreases on average by 2.01%.

Around 37% of districts see expected real wage increases.

Our quantification highlights the distributional consequences of adaptation to cli-

mate risk. In the counterfactual, initially better-off districts largely see welfare in-

creases, while initially worse-off districts see welfare declines. We decompose the

changes into the direct effects of changing risk and equilibrium effects of adaptation.

Regions where risk is increasing bear the direct effects of shocks, but also see down-

ward pressure on wages due to firms’ adaptation away from them. We show that for

regions that are experiencing an increase in risk, the economy’s adaptation is welfare

decreasing. In sum, our model and quantification show that firm sourcing decisions

help mitigate the effects of climate shocks and have quantitatively important general

equilibrium implications for real wages in safer regions relative to riskier ones.

Our results highlight two economic implications of climate change. On the positive

4For expositional simplicity, we use the term “risk” throughout the paper, but note that shocks
in our model have mean and variance effects. In our quantifiation, we decompose the effects of risk
into first moment (expected real wage) and second moment (volatility) effects.
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side, the risks of climate change are partially mitigated as firms anticipate climate risk

and diversify their sourcing decisions. This implies that more volatile weather does

not necessarily translate into higher aggregate output volatility. On the negative

side, climate change will have even larger redistributive effects across regions than

commonly believed. Regions with more climate risk will face the direct effects of the

shocks themselves, but additionally will also become less appealing to other regions as

a source of inputs. As a result, demand for products from these regions will decline,

and real wages will fall. The converse will occur in “safer” regions. In other words,

diversification amplifies the distributional effects of climate change.

Related literature. A growing literature studies how climate change shapes

economic activity in the long run, assessing how the distribution of economic activity

changes within and across regions, and countries (Desmet et al., 2021, Jia et al.,

2022, Cruz and Rossi-Hansberg, 2024, Hsiao, 2023, Bilal and Rossi-Hansberg, 2023,

Balboni, 2025, Farrokhi and Lashkaripour, 2024, Nath, 2024). Another branch of

the literature studies the effects of extreme weather events on firms’ employment

and location decisions, as well as on FDI, using empirical studies or stylized theories

(Indaco et al., 2020, Gu and Hale, 2023, Pankratz and Schiller, 2024). Both this paper

and Castro-Vincenzi (2024) examine how changes in disruption probabilities from

extreme weather events shape firms’ investments to mitigate risks—this paper through

supplier diversification and Castro-Vincenzi (2024) via plant relocation. However,

Castro-Vincenzi (2024) focuses on modeling in detail the industry equilibrium of the

global car industry, whereas this paper solves for the full general equilibrium of a

spatial economy under any distribution of location-specific risk.

Our theoretical and quantitative results are related to Kopytov et al. (2024), who

study supply chain adaptation to supplier volatility, and to Pellet and Tahbaz-Salehi

(2023), who study the implications of rigidities in supply chains that arise due to in-

complete information. Similar to the rigid inputs in Pellet and Tahbaz-Salehi (2023),

firms in our model place orders for intermediate inputs prior to shock realization,

and cannot adjust orders ex-post. In contrast to these papers, our model features

households in multiple regions who cannot trade shares of the different firms, and

the incentive to mitigate volatility arises from the concavity of firm profits. As a

result, in our framework, aggregate volatility decreases in trade openness, as firms

mitigate risk, reminiscent of the findings in Caselli et al. (2019). However, expected

real wages can be lower under costly trade compared to autarky. This parallels the
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results in these papers that aggregate output is also lower due to diversification away

from volatile suppliers. In our setting, eliminating trade barriers permits both ex-

pected real wages to be higher and aggregate volatility to be lower, maximizing the

benefits of diversification. At the micro level, our firm problem is similar to Blaum

et al. (2024), but our model delivers strong implications for how wages across space

are shaped by regional risk in general equilibrium, and can be used to infer the risk

that firms assign to different sourcing locations.

Supply chain fragility and resilience have received increased attention in the litera-

ture following recent global events (Grossman et al., 2023, 2024; Khanna et al., 2025;

Korovkin et al., 2024). Our firm-to-firm data are similar to Khanna et al. (2025), but

our identification strategy uses extreme weather events, and we emphasize the general

equilibrium consequences of the adaptation of supply chains to climate risk, which

are not studied in that paper. Our empirical evidence indeed suggests that firms’

supply chain responses to climate-related risk vary qualitatively and quantitatively

from their responses to an unanticipated, temporary shock like COVID-19.

A large research agenda emphasizes the importance of international trade in inputs

and the macroeconomic consequences of such trade (Yi, 2003, Johnson and Noguera,

2012, Caliendo and Parro, 2015, Antràs et al., 2017, Huo et al., 2024). Some papers

study the transmission of natural disasters through trade and supply chain links

(Barrot and Sauvagnat, 2016; Boehm et al., 2019; Carvalho et al., 2021). Our focus

is on quantifying the general equilibrium economy-wide consequences of firm supply

chain adaption to the (changing) probability of disruptions, rather than firm responses

to the incidence of a disruption.

Finally, our paper contributes to research studying trade under risk (e.g. Helpman

and Razin, 1978, Esposito, 2022, Allen and Atkin, 2022, Adamopoulos and Leibovici,

2024, among others). Balboni et al. (2024) and Blaum et al. (2024) provide evidence of

firm adaptation in Pakistan and the US, respectively. These papers provide empirical

evidence which we complement, but we focus on the quantitative model studying the

spatial general equilibrium implications of supply chain adaptation to risk.

The rest of our paper is structured as follows. Section 2 outlines our data and

shows descriptive patterns. Section 3 sets up the model, derives some analytical

results, and performs comparative statics. Section 4 calibrates and quantifies the

model and contains the climate change counterfactuals. Section 5 concludes.
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2 Empirical Approach

2.1 Data

Firm-to-firm trade. Our primary data source is daily establishment-level transac-

tions (while we use the term “firm”, the data are at the granular establishment level).

These data are from the tax authority of a large Indian state with a fairly diversified

production structure, roughly 50% urbanization, and high population density. Com-

paring this context to others with firm-to-firm transaction data, the state has roughly

three times Belgium’s population, seven times Costa Rica’s, and double Chile’s.

The data contain daily transactions from April 2018 to October 2020 between all

registered establishments within the state, and all transactions where one node of the

transaction (either buyer or seller) is in the state. All transactions have unique tax

identifiers for both the selling and buying establishments, and we observe the value

of the whole transaction, the value of the items being traded by 8-digit HSN code,

the quantity of each item, its unit, and transportation mode.

Each transaction also reports the zip code location of both the selling and buying

establishments, which we merge with other geographic data. By law, any goods trans-

action with value over Rs.50,000 ($700) has to generate eway-bills, which populate

our data. Transactions with values lower than $700 can also optionally be registered.

As such, our network is representative of relatively larger firms, but the threshold is

sufficiently low to capture small firms too. Indeed, part of the switch away from a

traditional VAT (value-added tax) to the Goods and Services Tax (GST) regime was

to expand the tax base and include many smaller establishments. The tax base under

this GST regime includes small (as small as one worker) and large establishments.

More information is in Appendix A, with summary statistics in Table A1. The dis-

tribution of customers and suppliers of each firm is very similar to that documented

by Alfaro Ureña et al. (2018) for Costa Rica.

We use the data to construct the buyer-supplier network every period, the total

value of firms’ inputs purchased, and output sold. To obtain a measure of real inputs

and output, we use the reported quantity of each transaction to calculate product unit

values, construct price indices, and deflate firm-level input purchases and sales.
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2.2 Descriptive Analysis

To begin, we document three facts related to supplier diversification and climate risk

to motivate the key features of our model.

Fact 1: Many firms source the same product from multiple regions. We

leverage the detailed product information in our transaction data and compute the

number of districts from which a firm sources a given product. As shown in Table 1

Columns 1 and 2, 96.5% of the total value of purchases come from firms with more

than one supplier-district, corresponding to 62% of firms purchasing from more than

one district. In Columns 3 to 6, we show that a significant fraction of firms also

multisource the same product across regions. We compute the number of districts

a firm-by-HSN product code pair sources from. In Columns 3 and 4, we use 4-digit

product codes; and in Column 5-6, 8-digit product codes. Even with the narrowest

product definition available in our data, 14.4% of firms source the same product from

more than one district, and 74% of purchases come from firms that source the product

from more than one district. This is evidence that a significant fraction of firms

multisource their products. In Appendix Table B1, we show that the distribution

of the number of supplier-districts is very similar when we exclude likely wholesalers

and likely retailers from the analysis.5

Table 1: Share of firms that source from multiple districts

Number of supplier
districts

Share of buyers
Share of buyers

x HSN-4
Share of buyers

x HSN-8

Firms Value Firms Value Firms Value

1 37.9% 3.5% 77.1% 13.1% 85.6% 25.8%
2-5 45.8% 20.1% 21.2% 39.2% 13.8% 42.1%
6-9 9.9% 14.4% 1.2% 17.2% 0.4% 13.5%
10+ 6.4% 62.0% 0.4% 30.5% 0.1% 18.6%

Note. Column 1 aggregates the data at the firm level and computes the share of firms that source
from a certain number of districts. Column 2 calculates the fraction of total value purchased by
number of supplier districts sourced from. Columns 3-4 aggregate the data at the firm-by-4-digit
product level, and Columns 5-6 at the firm-by-8-digit product level.

Fact 2: Firms that multisource more pay higher input prices, and also buy

products from farther distances and dryer regions. Focusing on firm-product

pairs at the 8-digit product level in Figure 1a, we show that firms that source the

5Table B2 shows that the results are consistent when looking at multisourcing across firms instead
of supplier districts.
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same product from more regions tend to buy from suppliers that are farther away. For

instance, firm-product pairs that source from one district have an average distance

of 350km to suppliers. On the other hand, firm-product pairs with five suppliers per

product more than double average distance, at 711km.

Figure 1b shows that firm-product pairs with more suppliers also seem to source

from less rainy districts. For firm-product pairs that source from one district, such

districts have, on average, 6.5mm daily rainfall. On the other hand, for firm-product

pairs that source from five districts, such districts have, on average, 5.4mm of daily

rainfall. The 1.1mm difference in rainfall between one and five source districts is 17%

with respect to the mean. In Appendix Table B3, we show that such patterns are also

prevalent for other measures of climate risk, such as historical riverine flooding.

Finally, in Figure 1c, we show that firms that source from more districts also

tend to pay higher prices for their inputs.6 As shown in Figure 1c, firms that source

from five districts pay an average price that is almost one standard deviation higher

than firms that source from only one district. The average price paid monotonically

increases with the number of districts sourced from.7

Fact 3: Supplier districts that face higher climate risk charge lower prices.

Figures 1b and 1c suggest that as buyers purchase from more suppliers, they source

from regions with lower climate risk and pay higher prices. The flip side of this

pattern is that suppliers in riskier areas might charge lower prices. To investigate this

relationship further, we estimate a regression at the buyer (j) - supplier district (d) -

product (p) level as in equation 1.

log(Price)j,d,p = α1 log(Climate risk)d + α2 log(Distance)j,d + α31(j in d)j,d+

α41(j, d in same state)j,d + γXd,p + δj + δp + ϵj,d,p ,
(1)

where log(Price)j,d,p is the log of the average price charged to buyer j for product p

by suppliers in district d. We control for the distance between j and d, indicators on

whether the buyer is in district d or the same state as district d, and a set of controls at

the product-supplier district level (Xd,p) such as the log size of all suppliers’ sales from

6To compute average prices, we first estimate a regression of log price on product fixed effects, and
standardize the residual of such regression to construct our residual price index. We then normalize
the average price for those firms that source from only one region to one.

7In Appendix Table B3, we show that these patterns are statistically significant, and remain so
within product and controlling for buyer size and supplier size. In other words, the patterns are not
driven by specific products, by larger buyers, or by supplier capacity.
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Figure 1: Supplier characteristics by number of districts sourced from

(a) Distance to suppliers (b) Average rainfall (c) Average price of inputs

Note. In the left panel, we compute the average distance between the firm and each of its suppliers
from our transaction data. We then compute the average distance across firm-product pairs sourcing
from 1 to 5 districts. In the middle panel, for each firm-product pair, we compute the average
daily rainfall at each of the districts the firm sources from. Daily rainfall comes from the India
Meteorological Department. We then compute the average across all firm-product pairs sourcing
from 1 to 5 districts. In the right panel, we compute the average price paid for inputs for firm-product
pairs sourcing from 1 to 5 districts. To construct our price index, we first run a regression of log
prices on product fixed effects and take the residual. We standardize the residual and normalize it
to 1 for firm-product pairs that source from only one district.

that district-product pair and the log of the total sales from that district. We also

include buyer and product fixed effects, so the identification of the climate variables

comes from firms that buy from multiple districts. Additionally, we include covariates

that aim to capture market power at the supplier district, such as the log of the total

number of suppliers for a given product in the district and the log of the largest

supplier market share for that product in the district.

We consider two climate risk measures: the average daily rainfall for each district

in 2019 and the historical river flooding in each district. Appendix B.2 details how

these climate variables are computed. As shown in Table 2, both climate measures

are negatively correlated with prices. The magnitudes are robust to including addi-

tional controls at the supplier-district level. A 10% increase in rainfall in a district

is associated with suppliers in those districts charging 0.11% lower prices. Similarly,

a 10% increase in riverine flooding levels in a district is associated with 2.55% lower

prices charged by suppliers in that district. While these results cannot be interpreted

as causal, they are suggestive that riskier areas charge lower prices.
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Table 2: Correlation between price and supplier district climate risk

Log (Price)j,d,p Log (Price)j,d,p Log (Price)j,d,p Log (Price)j,d,p

Log(Avg Rainfall)d -0.0179*** -0.0112** Log(Avg River Flooding)d -0.381*** -0.255***
(0.005) (0.005) (0.026) (0.026)

N obs 991,802 991,802 N obs 996,720 996,720
Additional controls No Yes Additional controls No Yes

Note. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. We run a cross-sectional regression at the firm (j),
supplier district (d), 8-digit product (p) level. The outcome is the log of the average price charged
by suppliers in district d, to firm j for product p. The first and third columns control for log average
distance between j and suppliers in d, a dummy variable for whether j is in district d, a dummy
variable for whether j is in the same state as d, the log of total sales in product p from suppliers in
d, the log of total sales of suppliers in d across all products, buyer fixed effects and product fixed
effects. Columns 2 and 4 include controls for the log number of suppliers for product p in d and
the log market share of the highest supplier of product p. Climate variables used are average daily
rainfall in district in 2019 (left panel) and historical riverine flooding levels in district (right panel).

Fact 4: Purchases fall temporarily when suppliers are affected by floods.

Next, we leverage the timing of unexpected floods to examine how input purchases

change in the lead-up to and right after the shock. Our event study examines pre-

trends in the lead-up to the shock, and dynamics thereafter. The absence of pre-trends

suggests that our parallel-trends identification assumption is likely to hold, whereas

the post-shock dynamics are informative of how long it takes for firms to recover after

the flood. In Appendix B.1, we discuss the data on flood events in our sample.

We use the existing supplier network (in the pre-shock period) as a measure of the

exposure to the disruption to study how buyers were affected when their suppliers

were hit. We examine outcomes yj,t,k,τ for firm j, in period t, and industry k, measured

in event-time (since flood) τ using the specification:

yj,t,k,τ =
x=+5∑
x=−5

[γx (Flood Exposure)jτ + δτ,x + βxXj,τ0−1] + δj + δr,k,t + ϵj,t,k,τ (2)

We estimate two specifications. First, when studying the direct impacts on suppliers

in flooded areas, “Flood Exposurejτ” takes a value of 1 if firm j was exposed to a flood.

Then, when examining how downstream buyers are affected, “Flood Exposurejτ” is

“Supplier Exposurejτ”, capturing how exposed its suppliers were to the flood:

(Supplier Exposure)jτ =
N∑
i

si,j,τ,x<0 × 1 (Supplier i exposed to flood in τ) ,
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where si,j,τ,x<0 is the value of purchases that firm j buys from firm i, relative to

firm j’s total purchases, over the five months before the flood. The index essentially

calculates the weighted average of the flood exposure of firm j’s sellers. A higher

value of the index implies firm j faces a higher “supplier-exposure,” as a larger share

of its purchases were coming from firms exposed to the flood.

We include a wide range of high-dimensional fixed effects to account for confound-

ing shocks. Firm fixed effects δj control for firm-specific time-invariant differences;

industry-by-time fixed effects δr,k,t control for district-industry-specific shocks and

any demand shocks;8 and flood event-time since flood fixed effects δτ,x control for ag-

gregate trends around the flood event that affect all firms (including those not in the

flood-exposed areas). Xj,τ0−1 contains controls for firm-demand shocks by including

the pre-period exposure to floods of consumers, interacted with time indicators. It

also includes controls for firm size-specific shocks by controlling for purchases in the

pre-period, interacted with time-since flood indicators.

Figure 2a plots impacts on suppliers, and shows a lack of meaningful pre-trends

in the lead-up to the flood. After the flood, there is an immediate decline in sales of

0.10 log points, which worsens until two months after the flood. After the two-month

slump, there is a quick recovery to what they were in the pre-period.

Figure 2: Effects of Floods on Sales and Purchases

(a) Sales of affected suppliers (b) Downstream purchases (c) From returning suppliers

Note. Figure 2a includes event-time, industry-time, and firm fixed effects and controls for pre-
period firm sales interacted with time indicators. Figure 2b and 2c include firm, time, event-time,
and industry-district-real time fixed effects, and log pre-period purchases-time controls. We also
include firm-demand controls by including the pre-period exposure to floods of a firm’s consumers
interacted with time dummies. Standard errors clustered at the district level.

Figure 2b plots effects on purchases of downstream firms. Once again, the co-

efficients in the pre-periods do not display any meaningful trends. Consistent with

Figure 2a, we find that purchases decline sharply for the first few months, and then

8When studying the direct impacts on suppliers, we include industry-time fixed effects δk,t instead,
as the flood varies at the district-time level.
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start to recover. Purchases are the lowest at two months after the flood, dropping by

0.07 log points with respect to the baseline period, for every one standard deviation

increase in the supplier exposure (SD of exposure is 0.1). As we describe in section

4.2, we use this estimate to choose the input disruption parameter χj to match the

drop. Interestingly, Figure 2c shows that affected firms return to existing suppliers

(rather than switch suppliers), which may suggest that firms are adapting to the

known risk of climate-related disruptions ex-ante.

Appendix B.1.2 examines a wider range of outcomes and methods. It shows these

patterns are similar if we use insights from recent advances in two-way fixed effects

methods, and estimate Local Projections-Diff-in-Diff (LP-DID) specifications or use a

binary treatment. We also illustrate responses of other outcomes, such as downstream

sales and prices.9 Finally, in Appendix C.4, we examine the importance of inventories

in our empirical analysis. We find that inventories are, on average, less than a month’s

sales, and are not correlated with multisourcing behavior.

In sum, our descriptive analysis, while not causal, provides suggestive evidence

consistent with firms diversifying inputs to mitigate climate risk, and in the process

facing a trade-off between input costs and risk.

3 Model

We develop a spatial general equilibrium model of firm sourcing under risk and per-

form comparative statics. The model is static, as rich geographic variation and a large

number of locations is necessary for illustrating the diversification mechanism.10

9We find that downstream sales decrease by 7% in the three months after the shock for exposed
firms relative to non-exposed firms while total purchases decrease by 16%, implying for every 1% de-
crease in purchases, sales decrease by 0.43%. In a back-of-the-envelope calculation, our quantitative
model in Section 4 predicts that for every 1% decrease in purchases, sales decrease by 0.47%.

10The event studies illustrated (short-lived) dynamic responses to shock incidence. However, a
dynamic model with sufficiently rich geographic variation is not currently tractable. Our emphasis is
on understanding the steady state GE consequences of a distribution of risk across space, not on the
reaction to the incidence of a disruption. That said, our model can be used to study the immediate
ex-post response to the incidence of a disruption, as we do in Section 4.5. Given the short-lived
responses in the data, we would not expect a significant role for additional dynamics here.
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3.1 Setting

The economy consists of I regions. Each region i is endowed with Li workers, a

unit continuum of final goods producers who produce nontraded final goods, and

competitive intermediate goods producers.

Timing. The model is static and consists of two stages. In the first stage, final goods

producers in each location i place their orders for intermediate inputs from location

j, Mji. In the second stage, inputs are produced, origin-specific sourcing disruption

shocks, χ = {χj}, j ∈ I are realized, and then inputs are delivered, final goods firms

choose their labor inputs and produce, households supply labor and consume, and all

markets clear at equilibrium prices.

Households. The representative household in region i supplies labor Li inelastically

to firms in i and chooses a consumption aggregate of the non-traded regional final

goods, qi(χ), to maximize

max
qi(ω,χ)

log

([∫
ω∈[0,1]

qi(ω,χ)
σ−1
σ dω

] σ
σ−1

)
(3)

subject to the budget constraint,∫
ω∈[0,1]

pi(ω,χ)qi(ω,χ) = Yi(χ) ≡ wi(χ)Li +Πi(χ) ∀χ ∈ G(χ), (4)

where pi (ω,χ) is the price of final good qi (ω,χ), Yi(χ) is total income in region i,

and σ > 1 is the elasticity of substitution. Total income Yi(χ) is composed of labor

income, wi(χ)Li, and aggregate profits rebated to the household by the firms, Πi(χ).

Our baseline model assumes labor is immobile across regions.

The Lagrange multipliers λi(χ) = 1
Yi(χ)

of the state-specific budget constraints

measure how much an extra unit of income contributes to utility in different states

of the world. These multipliers define the stochastic discount factor firms use to

compare profits across different states of the world.

Intermediate goods producers. In each region, there are a continuum of compet-

itive suppliers of tradable intermediate inputs, M̄i, with production function M̄i =

ziℓ
M
i , where zi is their productivity and ℓMi is the labor used in the production of

intermediates. The price of intermediates in i is equal to their constant marginal

cost, pMi (χ) = wi(χ)
zi

, where wi(χ) corresponds to the wages in that region. Notice
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that intermediates M̄i are produced before the realization of shocks, but their price

is potentially stochastic.

Let pMji (χ) denote the price of intermediates from j used in i. We assume iceberg

trade costs τji between regions. No arbitrage in shipping implies that the factory-gate

price and price at time of intermediate usage are related: pMji (χ) = τjip
M
j (χ).

Final goods firms. Each region i contains a unit continuum of homogeneous final

goods producers that produce differentiated varieties ω. Final goods are not tradable

across regions. The constant returns to scale production function of the firms is

qi(ω,χ) = ϕiℓi(ω,χ)
βxi(ω,χ)

1−β , (5)

where ϕi is the productivity of final goods’ producers in location i, ℓi(ω,χ) is the

firm’s labor input, and intermediates, xi(ω,χ), can be sourced from each region j ∈ I

as perfect substitutes:11

xi(ω,χ) =
∑
j∈I

xji (ω,χ). (6)

For compact notation, for the remainder of the paper we suppress the explicit depen-

dence of variables on χ except where necessary for expositional clarity. Note that all

equilibrium variables except M̄i remain potentially stochastic.

Second stage. In the second stage, final goods firms have already placed their

orders of intermediates Mji (ω), shocks χ have been realized, and production takes

place. The second-stage profit maximization problem of a final goods firm in i is

max
qi,{xji}Ij=1,ℓi

[
YiPσ−1

i

] 1
σ qi (ω)

σ−1
σ − wiℓi(ω) (7)

such that xi (ω) =
∑
j∈I

xji(ω) (8)

xji(ω) ≤ χjMji(ω) ∀ j , (9)

and the production function (5). Here, Yi is income, and Pi is the price index in region

i. χj ≤ 1, j ∈ I are the shock realizations. We assume the shocks destroy some of the

11Appendix E.2 considers a CES aggregate of inputs.
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orders of inputs, Mji, that have been placed in the region in the first stage, and so if

a shock materializes, the firm receives fewer inputs than its order. This captures the

notion that risk is associated with a disruption of the quantity of inputs that arrive

for production for reasons that can include climate-associated shocks such as rainfall

or floods, and we will calibrate the shock size to match our event study estimates in

Section 2.2. We assume the stochastic shocks are origin-specific, and so they affect

orders of inputs from all buying regions. As the shocks are not idiosyncratic, they

will potentially affect aggregate outcomes.12

Note that as second-stage profits (7) are monotonically increasing in input usage

xi(ω), the firm will always optimally use all available inputs that are delivered of its

orders Mji (ω). In other words, Equation (9) will always hold with equality.

The first order conditions of the firm’s second stage problem (7) pin down a firm’s

optimal choices of labor li, as well as its price pi, quantity qi, and profits πi as a

function of the vectors of first stage orders Mi = {Mji}Ij=1 and origin-specific shocks,

χ = {χj}Ij=1. In particular, the expression of profits for a firm in region i, suppressing

the variety index ω for concise exposition, is:

πi(Mi;χ) =

[
σ(1− β) + β

β(σ − 1)

] [
β(σ − 1)

σ

] σ
β+σ(1−β)

w
β(1−σ)

β+σ(1−β)

i

[YiPσ−1
i

]
ϕσ−1
i

∑
j∈I

χjMji

(1−β)(σ−1)


1
β+σ(1−β)

.

(10)

First stage. In the first stage, prior to the realization of shocks, final goods pro-

ducers in all locations choose their orders Mji of inputs to maximize expected profits.

Firms have rational expectations and make their input sourcing decisions based on

the true joint distribution of origin-specific disruption shocks, G(χ).13 While the

model can readily accommodate alternative belief structures, the assumption of ra-

tional expectations is useful for our estimation approach. We consider an alternative

belief structure in Section 4.5.

The firm’s problem in stage one is

12These origin-specific shocks can alternatively be viewed as a disruption to all trade
costs/transport routes with the shocked region (Balboni et al., 2024).

13In our quantification of the model, we assume that these shocks are binary, occurring with
probability ρi in each location i, and we permit spatially-correlated shocks.

16



max
Mi≥0

Eχ

[
λi

(
πi(Mi;χ)−

∑
j∈I

pMji Mji

)]
, (11)

where pMji is the order cost of inputs from j in i, and πi(Mi;χ) is as in Equation 10.

The first order conditions of this problem are

Eχ

λi

χjΘi

[∑
j∈I

χjMji

] −1
β+σ(1−β)

− pMji

 ≤ 0 ∀ j , (12)

where Θi =
[
(1−β)

β

] [
β(σ−1)

σ

] σ
β+σ(1−β)

w
β(1−σ)

β+σ(1−β)

i

[[
YiPσ−1

i

]
ϕσ−1
i

] 1
β+σ(1−β) is a function of

equilibrium aggregates that are potentially stochastic, as Yi, wi, and Pi might depend

on the shock realizations across regions.

These first-order conditions highlight that when placing an order for intermediate

inputs of a given origin j, firms equate expected marginal benefits and marginal

costs. Moreover, this optimality condition elucidates under which circumstances the

firm does not source from a particular location. This occurs if the expected marginal

benefit from placing an infinitesimal order in location j, with optimal orders elsewhere,

is strictly smaller than its expected price, pMji (χ).

Proposition 1 Ex-ante profits are concave in orders of inputs Mji.

Proof. See Appendix C.

This property of the firm’s problem, which arises from the firm’s inability to adjust

input orders ex-post, together with downward-sloping final demand for the firm’s

good, is important for the firm’s optimal sourcing strategy. Interestingly, it implies

that the firms behave as if they are risk-averse, even without explicit risk aversion

in managerial preferences, when placing their inputs orders to maximize expected

profits. As a result, the “risk aversion” from the concavity in profits implies firms

will optimally diversify sourcing locations.

Note that our setting does not feature standard love-for-variety motives for diversi-

fication. However, while the assumption of perfect substitutability of inputs is stark,

inputs from different locations are differentiated by their risk profiles. Appendix

E.2 shows that the concavity of firm profits continues to hold with a CES aggrega-

tor of inputs from different origins, featuring love-for-variety effects. Our baseline

17



assumption permits sharp analytical insights and allows us to focus purely on the

risk-diversification motive.14

3.2 General Equilibrium

In the second stage, shocks are realized, inputs are delivered across regions, and goods

and labor markets clear. The labor market clearing condition for region i is

Li −
M̄i

zi︸ ︷︷ ︸
L̃i, Final goods labor

=

β(σ − 1)

σ

1

wi

[
YiPσ−1

i

] 1
σ

ϕi

∑
j∈I

χjMij

1−β


σ−1
σ


σ

β+σ(1−β)

, (13)

where L̃i is the labor used in the production of final goods in i, and M̄i

zi
is the labor

used in the production of M̄i =
∑J

j=1 τijMij intermediates to ship to all regions j ∈ I

from region i. Goods markets clear in each region, implying that the region’s income

is equal to its expenditure:

Yi = wiLi + Π̂i , (14)

where Π̂i are the aggregate profits in i of the final goods firms as in Equation (7) less

their intermediate goods order costs

Π̂i =

∫
πi(ω)dω −

∫ ∑
j

pMij Mij(ω)dω. (15)

Notice that we assume firms pay for their orders of intermediate inputs, not for the

fraction they receive after the shock. Additionally, Equation (13) implies that the

full quantity of intermediates ordered in stage 1 is produced. This implies that the

shocks “destroy” a fraction of produced inputs.15,16 The equilibrium of the economy

14With a finite elasticity of substitution, firms would choose to source from all locations, inconsis-
tent with the data on sourcing shares, which features many zeros. Here, the diversification motive
would imply they source more at the intensive margin from each region. To match the observed
sourcing shares, the model would then have to have fixed costs of sourcing, rendering it intractable.

15We do not observe actual contracts between firms in the data, so we have to make an assumption
regarding what fraction of the orders of inputs are paid for. Our setup would remain tractable under
alternative assumptions, e.g. only a fraction of the order is paid for upfront. While that would change
the input costs entering Equation (11), it would not change the concavity of first stage profits in
order costs, which is the key mechanism for firm input diversification in this framework.

16We assume all inputs ordered are produced, while our event studies showed a decline in the sales
of affected firms. Our model is consistent with this pattern as the event studies are based on the
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is formally defined in Appendix C.1.

Features of the equilibrium. As all firms in a region are homogeneous, under the

unit mass of firms assumption, the regional price index Pi = pi, and aggregate profits

Π̂i = π̂i. We can then characterize several features of the equilibrium.

Lemma 1 Aggregate profits are a constant fraction of labor income Π̂i =
1

σ−1
wiLi.

Further, aggregate expenditure on materials in i is given by∑
j

pMij Mij = (1− β)wiLi, (16)

and aggregate income in location i is given by,

Yi =
σ

σ − 1
wiLi. (17)

Proof. See Appendix C.2.

Lemma 2 The aggregate labor demand of final goods producers is inelastic, indepen-

dent of the realization of shocks, χ, and is a constant share of the aggregate labor

endowment,

L̃i = βLi. (18)

Proof. See Appendix C.2.

To understand the intuition behind Lemma 2, consider the case of firms in a region

facing negative shocks in its sourcing locations at the start of stage 2. Due to input

disruptions, all else equal, the demand of final goods producers for labor falls. But in

equilibrium, this decline is exactly offset by the increase in final goods prices and real

wage declines, as aggregate consumer demand is downward-sloping. The net effect is

that the aggregate labor demand from final goods producers remains unaffected.

Equation (18) shows that equilibrium wages must be such that the remaining

workers are used by the intermediate inputs sector in stage 1. This implies that

equilibrium wages wi and input prices pMi are such that stage 1 firm input orders

demand (1− β)Li to produce M̄i so that labor markets clear.

value of inputs that are shipped after a shock. They do not speak to the quantity of inputs produced
or the payments firms have made for their input orders.
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Lemma 3 Let labor in region 1 be the numeraire. Equilibrium relative wages wi are

deterministic. This implies that aggregate income in location i is also deterministic.

Proof. See Appendix C.2.

Lemma 3 follows immediately from the discussion above. There is a unique wage wi

in each location such that equilibrium input orders placed by firms in stage 1 require

(1− β)Li, the labor not used in final goods production in stage 2, to be produced.

This result is not imposed by assuming wages are predetermined or fixed in stage 1.

Rather, since aggregate labor demand from final goods producers is perfectly inelastic

and independent of realized shocks, the equilibrium vector of regional wages, wi,

must be determined entirely by conditions prevailing before uncertainty is resolved.

Consequently, there exists exactly one deterministic wage vector that clears regional

labor markets, equating the labor demand of intermediate goods producers with the

labor supply net of the invariant labor requirements for final goods production.

This simplifies the analysis substantially: while wages could potentially vary across

states of the world, by Lemmas 1-3, wages, input prices, nominal income and profits

are deterministic. The only aggregate variable that is stochastic, varying with the

realization of shocks, is the ideal price index, Pi

In the ex-post general equilibrium, the expression for Θi, which is part of the

marginal contribution to profits of a marginal unit of Mji (Equation 7), is given by

the following expression:

Θi = (1− β)wiLi

(∑
j∈I

χjMji

)− (1−β)(σ−1)
β+σ(1−β)

.

This implies that Θi is stochastic from the perspective of firms in stage 1.

Ex-Ante General Equilibrium As pointed out above, the vector of relative wages

is deterministic and determined at the first stage, and intermediate goods producers

employ (1− β)Li workers in input production. In turn, due to the linear technology

assumption, it must be the case that in equilibrium, the production of intermediates

in each location is equal to M̄i = (1− β)ziLi. In the equilibrium of this economy, the

vector of wages, {wi}Ii=1, must be such that total demand from intermediate goods

producers in each region exactly equals this amount.

From trade balance and optimal total intermediate-expenditure conditions, we
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derive the following equilibrium system, generating the equilibrium wage vector:

wjLj =
∑
i

wiLisji({wi}Ii=1) ; sji({wi}Ii=1) =

wjτji
zj

Mji({wi}Ii=1)∑
ℓ
wℓτℓi
zj

Mℓi({wi}Ii=1)
∀ j ∈ I,

where crucially, the matrix of sourcing shares defined by
{
sji({wi}Ii=1)

}I

i=1,j=1
is a

function of the vector of wages, the parameters of the model, and the probability

distribution of the shocks.17 This completes the description of the economy.

Welfare Agents’ welfare is given by expected consumption, which is equal to the

final goods producers’ output and varies by region. In general equilibrium, the ag-

gregate output of the final sector in region i, conditional on available inputs, is

Qi (Mi;χ) = ϕiβ
βLβ

i

(∑
j

χjMji

)1−β

,

and expected welfare becomes

Wi = Eχ [logQi (Mi;χ)] = log ϕi+β log β+β logLi+Eχ

[
(1− β) log

(∑
j

χjMji

)]
.

(19)

As is clear from this welfare expression, since consumers are risk averse under log

utility, the sourcing strategy selected by the final goods producers has effects on their

welfare. Consumers benefit from diversification in firms’ sourcing strategies.18

3.3 A Two Location Example

To gain intuition, consider a simple case with two locations. Region 1 is risky and

receives a shock χ1 < 1 with probability ρ, and region 2 is a safe location.19 Ad-

ditionally, there are no trade costs, and therefore, the optimal intermediate bundle

chosen by firms is the same in both locations.

17Similar non-linear systems of equations in wages appear in several static trade models. Note
that here, the system includes orders of intermediates, Mji, which are also equilibrium objects and
do not have a closed-form solution.

18The model can be solved under CRRA preferences, which can be parameterized to imply stronger
risk aversion and larger welfare gains from diversification.

19That is, E1
χ = ρχ1 + (1− ρ) and E2

χ = 1.
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Notice that in equilibrium it must be that pM1 < pM2 , because otherwise, the safe

location’s input is unambiguously better than the input from the risky location, and

the labor market will not clear in the risky location.20

The optimal stage 1 sourcing choices for firms from both regions i ∈ {1, 2} is

M1i : ρχ1λ
S
i Θ

S
i [χ1M1i +M2i]

−1
β+σ(1−β) + (1− ρ)λNS

i ΘNS
i [M1i +M2i]

−1
β+σ(1−β) = pM1

(20)

M2i : ρλ
S
i Θ

S
i [χ1M1i +M2i]

−1
β+σ(1−β) + (1− ρ)λNS

i ΘNS
i [M1i +M2i]

−1
β+σ(1−β) = pM2 ,

(21)

where ΘS
i = (1−β)(σ−1)

σ
Yi (χ1M1i +M2i)

− (1−β)(σ−1)
β+σ(1−β) and ΘNS

i = (1−β)(σ−1)
σ

Yi (M1i +M2i)
− (1−β)(σ−1)

β+σ(1−β) .

As discussed above, Θi is stochastic, and depends on whether or not the shock ma-

terializes in region 1. Under the monopolistic competition assumption, all firms take

these aggregates as given. Entering these shifters into the first order conditions of

the firms, we can solve for optimal orders as a function of wages:

M1i =
(1− β)(σ − 1)

σ
Yi

[
1− ρ

pM1 − χ1pM2
− ρ

pM2 − pM1

]
(22)

M2i =
(1− β)(σ − 1)

σ
Yi

[
ρ

pM2 − pM1
− (1− ρ)χ1

pM1 − χ1pM2

]
. (23)

Let wages in the less-risky region 2 be the numeraire. As intermediates are priced at

marginal cost and from the labor market clearing condition (Equation 13), a constant

fraction of labor is used in the production of intermediates, and we can show that

equilibrium wages in the risky region 1 are given by

w1 =
z1
z2

z1L1χ1 + z2L2(1− ρ(1− χ1))

z1L1(ρ+ χ1(1− ρ)) + z2L2

. (24)

Equation 24 shows that the nominal wage in the risky location relative to the safe

one is a function of relative productivities, relative sizes, and the probability and

magnitude of the shock. This wage is increasing in relative productivity and decreas-

ing in relative population of location 1, and particularly relevant to our application,

decreasing in both the probability and the magnitude of the sourcing disruption.

20The fact that in this simple case, we have an interior solution for firms in both locations does
not need to hold in general when there are multiple locations and trade costs.
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3.4 Comparative Statics

For a larger number of regions, the model does not have an analytical solution, so we

first illustrate the model’s properties in a stylized 3-region setting. We assume the

regions are homogeneous in firm productivity ϕi, labor endowment Li, and intermedi-

ate producer productivity zi. Trade is costly between regions with distance elasticity

of 0.5. We assume if a shock occurs, 90% of the inputs are destroyed (χ = 0.1).

To focus on spatial variation in risk, we assume the three locations are equidistant,

but risk varies across space. We assume 1
I

∑3
i=1 ρi = 0.5 and contrast costly trade

to autarky. Appendix C.3 allows for regions to vary in their distance to each other,

placing them on a straight line, but with constant risk (ρi = 0.5 for all i).

Heterogeneous risk, homogeneous distance. The left panel of Figure 3 illus-

trates the regional maps and the shock probabilities of each region in the heteroge-

neous risk case. As regions are equidistant, geography does not play a role in di-

versification. The middle panel shows the bilateral sourcing shares between regions.

The diagonal is the darkest: in the presence of trade costs, all regions source most of

their inputs from their own region despite heterogeneous risk. However, there is clear

variation. Regions 1 and 3 (the safest regions), see the most “own sourcing.” The

riskiest region 2 diversifies the most. All regions source inputs from other regions,

with relatively larger shares from those with low risk.

The right panel shows that expected real wages across regions are negatively cor-

related with shock risk, and are highest in safest locations despite identical regional

fundamentals. The underlying mechanisms are that safer regions experience higher

labor demand for their intermediate inputs from all regions, pushing up nominal

wages. They also face a lower price index of their final goods, as they can source safer

“domestic” inputs without paying trade costs. Notice that in general equilibrium, the

wage impacts on riskier regions will modulate sourcing from them.

Heterogeneous risk and autarky. In the same environment, we set trade costs to

infinity, shutting down inter-regional input sourcing. Appendix Figure C1 illustrates

that in regional autarky, the riskiest region sees the lowest expected real wages, while

the safest regions see the highest expected real wages. These regions have the lowest

expected prices due to lower shock probabilities and fully domestic sourcing.

We next consider how expected real wages change across regions moving from

costly trade to autarky in Panel A, Figure 4. Interestingly, all regions see a decline
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Figure 3: Scenario with heterogeneous risk, homogeneous distance

Different distance between regions

(a) Shock Probabilities (b) Bilateral Sourcing Shares (c) Real Wages

Note. The figures in the left panel show the probability that each region is hit by a shock, as well
as a visual representation of the geographical location of regions in space. The figures in the middle
panel consist of a 3x3 input-output matrix where the buying regions are on the vertical axis, and
the supplying regions are on the horizontal axis. Each line represents the share of inputs purchased
by a buying region from each supplying region. The right panel presents the real wages for each
region. Regions are equidistant from each other. The scales are shown to the right of each figure.

in expected real wages moving to trade from autarky. In this setting, there are no

gains from varieties. The primary reason for trade is for risk diversification. However,

trade is costly, so the benefits of diversification are obtained at a higher average input

price, raising regional price indices and lowering expected real wages.

The lower expected real wages under costly trade do not imply welfare losses from

trade: Panel B of the figure illustrates that there is a large decline in the volatility

of real wages under trade for all regions. Supply chain diversification lowers the

variance in final goods prices across all regions, insuring against shocks and real wage

volatility. Household welfare is the expected log quantity of the final goods bundle

consumed (Equation 19). As a result, the decline in variance of real wages contributes

positively to their welfare, offsetting the decline in expected real wages, and trade is

welfare-improving.21

4 Quantification

4.1 Solution Approach

The solution to the quantitative model introduced in Section 3 requires overcoming

three computational challenges. First, the perfect substitutability across intermediate

inputs from different origins, combined with the existence of trade costs, implies that

21Recall, E[logX] ≈ logE[X]− cV[X]. This result depends on the assumption of log utility.
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Figure 4: Comparison between heterogeneous risk under costly trade and autarky

Different distance between regions

(a) Expected Real Wages Ratio (b) Variance of Real Wages Ratio

Note. In this figure we plot the expected real wages (left panel) and variance of real wages (right
panel) for the scenario with heterogeneous risk and costly trade shown in Figure 3 relative to the
scenario with heterogeneous risk and autarky shown in Figure C1. The variance of real wages is
computed across potential states of the world. Here, regions are are equidistant from each other.
The scales are shown to the right of each figure.

the solution to the firms’ sourcing problem may not necessarily be interior; that is,

firms in some regions might find it optimal not to source from certain origins. Second,

finding the solution to the firms’ optimal sourcing problem involves computing a

high-dimensional expectation over 2I states of the world.22 Third, the two challenges

mentioned above are compounded by the need to find the equilibrium of the model,

which amounts to finding the vector of wages for which all markets clear.

Given a vector of wages, {wi}Ii=1, and shock probabilities, {ρi}Ii=1, we leverage

the structure of the model to solve it efficiently. The first property of the problem

described in Equation 11 is that the objective function is concave, and that the

constraints are linear. Thus, any locally optimal point is also globally optimal, i.e., the

Karush-Kuhn-Tucker (KKT) conditions are both necessary and sufficient for global

optimality. These allow us to solve the firm’s problem by combining the stationarity

and complementary slackness conditions to find that at the optimum, the following

condition holds with equality:

22There are more than 600 districts in India, but for computational feasibility we group small
contiguous districts to create 271 regions. We implement our model for the 271 regions, so that
involves computing expectations over 2271 ≈ 1082 states of the world.
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χiΘj

[
I∑

i=1

χiMij

] −1
β+σ(1−β)

Mij =
wiτij
zi

Mij ∀ i ∈ I,

which results from multiplying the first order condition in Equation 12 by Mij. We

substitute for the general equilibrium object, Θj, to derive the following:

(1− β)wjLjMijE

χi

(
I∑

i=1

χiMij

)−1
 =

wiτij
zi

Mij ∀ i ∈ I.

This system of I equations in I unknowns defines a nonlinear complementarity prob-

lem for which efficient numerical optimization routines exist.23 Finally, we approx-

imate the high-dimensional expectation by using simulations, effectively solving the

following system of equations for each region:24

(1− β)wjLjMij
1

S

S∑
s=1

χ(s)
i

(
I∑

i=1

χ
(s)
i Mij

)−1
 =

wiτij
zi

Mij ∀ i ∈ I.

The procedure described above yields a solution to the firms’ sourcing problem

given a vector of wages, {wi}Ii=1. To find the equilibrium wages, we manipulate the

trade balance and the optimal total intermediates expenditure conditions to derive

the following equilibrium system,

wjLj =
∑
i

wiLisji({wi}Ii=1) ; sji({wi}Ii=1) =

wjτji
zj

Mji({wi}Ii=1)∑
k

wkτki
zk

Mki({wi}Ii=1)
∀ j ∈ I,

where, the matrix of sourcing shares defined by
{
sji({wi}Ii=1)

}I

i=1,j=1
is a function of

the vector of wages and model parameters. The solution to the system of equilibrium

conditions above finds the equilibrium wages conditional on a vector of probabilities,

{ρi}Ii=1. We describe how we calibrate these probabilities in the next subsection.

23We solve this problem using the optimizer PATH implemented on Julia through the optimization
modeling language JuMP.

24In our estimation procedure and in the computation of counterfactuals, we use 10000 simulations.
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4.2 Calibration

For computational feasibility, we group the over 600 districts in India into 271 re-

gions by grouping contiguous low-population districts.25 We calibrate our model to

these 271 regions. To calibrate the model for India as a whole, we complement our

transaction data with the Annual Survey of Industries (ASI), which is a nationally

representative survey of manufacturing plants in India with more than ten employees.

We primarily use the wave of 2006-7 since it is the last year for which the ASI has

publicly available district identifiers, and more recent years cannot be used at the

district-level to calibrate a spatial model.

We need to calibrate the following parameters and moments: the demand elasticity

(σ), labor endowments by district (Li), regional productivities (ϕi, zi), the labor share

in the production function (β), iceberg trade costs (τij), the input disruption due to

the shock (χj) and flood probabilities (ρi).
26

First, we set the demand elasticity σ = 2 following Boehm et al. (2023). Second, we

use the ASI to obtain employment by district, which is our labor endowment, Li. We

use the documented evidence in Fact 4 in Section 2.2 to choose the input disruption

parameter χj, and match the drop in buyer purchases from the event study. This

generates a response to the incidence of a disruption within our model that matches

the drop estimated in Fact 4.27

Productivities To estimate productivities by district, ϕi, and the labor share β,

we follow the production function estimation literature and use the Ackerberg, Caves,

and Frazer (2015) approach (henceforth ACF).28 We use revenues as the dependent

variable and labor, materials, and capital as production function inputs and estimate

25We aggregate districts with fewer than 10000 manufacturing workers to a single district within
a state, or merge them to neighboring larger districts in their own state.

26Calibrating these parameters prevents us from using geographical units that are smaller than
districts, as additional data for calibration are not available for smaller areas.

27Note that we calibrate χj to the impact of the incidence of a flood. The disruption probabilities
in our model capture many sources of risk, climate- and non-climate-related, as we discuss below.
This calibration assumes all disruptions, if they occur, are as severe as the realization of flood events.
We do not have other exogenous shocks to discipline the severity of other sources of risk, but we can
readily assess robustness to alternative values of χj in the quantification.

28This approach requires lagged values of labor and materials as instruments, and we need a
panel of firms. However, the public version of the ASI is a cross-section of plants which prevents
constructing a firm-level panel. As a solution, we use the waves for 2004-05, 2005-06, and 2006-07 to
construct a synthetic panel at the industry-district level. We then treat each industry-district pair
as a “firm” for the purposes of estimation.
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the production function parameters and the productivities.29

Panel A of Figure 5 illustrates the estimated variation in district-level productiv-

ities. From the ACF procedure, we also get the corresponding coefficients for labor,

materials, and capital. The results are shown in the left panel of Table 3, where the

materials share is 0.81, the labor share is 0.17, and the capital share is 0.08. We

compute the labor share as β = 1 − 0.81 = 0.19. As we do not have capital in the

model, we think of the labor share as the share of capital-augmented labor, so we

include both capital and wage expenses into the calculations.

Figure 5: Estimated productivities and disruption probabilities

(a) Productivity (b) Model-Implied Risk Profile

Note. In this figure, we plot the estimated district-level productivities (left panel) and the model-
implied district-level disruption probabilities (central panel). Productivities are estimated using the
ACF procedure as described in the text. Baseline disruption probabilities are obtained by matching
model-implied sourcing shares to the data as described in the text. The right panel plots the district-
level disruption probabilities implied by the parameterized approach outlined in the text. The scales
are shown to the right of each figure.

Iceberg trade costs The iceberg trade costs τij are estimated using our transaction

data, leveraging our information on transaction-level prices. Our data is only available

if one node of the transaction lies in one particular state, but we need to back out

trade costs for each bilateral pair of districts throughout India. To address this, we

proceed in two steps. First, we use our transaction data, focus on firms in our state

29Once we back out the ACF productivity for each industry-district pair, we aggregate at the
region level by using weights based on the relative importance of each industry in each region. In
the few cases where productivity cannot be estimated due to missing data for smaller districts, we
assign those regions the average productivity of their closest neighbors.
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that sell their goods, and aggregate the data at the seller-buyer-product-time level.

We then estimate Equation 25.

log(ps,b,t,q) = γ1 log(distances,b) + γ21(b in same state as s)s,b + δs,q,t + ϵs,b,t,q, (25)

where ps,b,t,q is the price charged by seller s to buyer b for product q at time t. For

each buyer-supplier pair, we compute the log distance between them as reported in

our transaction data. We also include an indicator variable for whether the buyer

(b) is in our state. The coefficient on distance captures how prices charged change

as distance increases. Importantly, we add seller-product-time fixed effects δs,q,t, so

effectively, the coefficients γ1 and γ2 are being identified by sellers that sell the same

product to multiple buyers in a given time period.

The underlying assumption is that unobserved iceberg trade costs τij are propor-

tional to distance. In our data, the same seller charges different prices to different

buyers for the same product and month. We assume this variation partly depends

on unobserved iceberg costs. As we include seller-product-time fixed effects, the esti-

mates are not driven by seller-shocks (e.g., productivity) that may affect prices.

Note that iceberg trade costs conventionally include observed costs such as freight

or transportation, but additionally other unobserved costs such as contracting fric-

tions, linguistic/ethnic differences, unobserved preference shifters, etc. We assume

these are proportional to observed distance, which is common in gravity estimation.

In our data, freight costs are not required to be included in the values of goods

shipped reported, though sellers might include this. So, it is likely our iceberg trade

cost estimation might not include transportation costs. Some sellers also explicitly

separately report freight costs. As robustness, we also create an “Adjusted Price”

measure, which adds the reported freight costs. Estimates remain similar, but the

sample is much smaller as this variable is missing for many observations in the data.

The results of this regression can be found in the right panel of Table 3.

We then use the estimated coefficient to predict trade costs for the rest of India.

We compute bilateral distances between district centroids and predict trade costs

between regions using the estimated coefficients γ̂1 and γ̂2. We assume that the

border effect estimated through coefficient γ̂2 is the same for all states.

Disruption probabilities. Our model implies that bilateral sourcing shares are

pinned down by district fundamentals like productivities and labor force and by bi-
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Table 3: Estimation results

Panel A: Production Function Estimation Panel B: Trade Costs Estimation

log(Sales) log(Prices,b,t,q) log(Adj. Prices,b,t,q)

log(Materials) 0.81*** log(distance from s to b) 0.0174*** 0.0186***
(0.076) (0.0001) (0.0002)

log(Workers) 0.17*** 1(b in same state as s) -0.086*** -0.0798***
(0.061) (0.0001) (0.0009)

log(Fixed Capital) 0.08
(0.063)

Number of Observations 9128 Number of Observations 65,477,898 45,338,641

Note. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1 Panel A presents the results of the production function
estimation using the ACF procedure. The reported coefficients are for log materials, log number of
workers, and log fixed capital as calculated from the ASI. Panel B presents the results for the trade
costs estimation using our transaction data. The outcome is the log price charged by a seller in
our state (s), for a given product (q), to a buyer (b) in a given month-year period (t). The main
regressors are log distance from buyer to seller and a dummy that takes the value of 1 if the buyer
is in the same state as the seller. We control for seller-product-time fixed effects. In column 2 of
Panel B, we compute the adjusted price by adding the total transaction value and “other” reported
costs (including freight), and dividing by quantity. Other costs include additional self-reported
transportation costs not reported in the transaction value.

lateral trade costs, as well as the vector of district-level shock probabilities. There-

fore, we can obtain the vector of shock probabilities, ρi, by minimizing the distance

between the observed sourcing shares in the data with those implied by the model.

When estimating the probabilities, we allow for spatial correlation in the realization of

disruptions, as floods or other disruptions might affect more than one district.30

The intuition of the exercise is as follows: conditional on the rest of the parameters

and moments of the model, we pick the shock probabilities of each district to minimize

the distance between the model-implied shares with the observed shares of purchases

from every district in our state to each other district in India.31 This is our baseline

30We assume that these disruptions are generated by a binary random variable that is equal to 1
whenever a normal latent variable with mean 0 and standard deviation 1 is below a threshold equal
to Φ−1(ρi), where Φ−1 is the standard normal inverse CDF. We allow these latent variables to be
correlated across regions, where the correlation in the realizations between region i and region j is
equal to e−ζDistij , where ζ is a measure of spatial decay in this correlation. We estimate ζ in the
same routine as the probabilities, ρi.

31We do not observe the realizations of disruptions in each district, and we remain agnostic on the
sources of risk that generate disruptions. However, observed sourcing shares in the data include any
realizations of disruptions, which we treat as structural errors. Precisely, given a sourcing strategy in
each region, we generate a large number of shocks, χi, from the true distribution G (χ) ,P (χi = χ) =
ρi and compute the model-implied shock-inclusive sourcing shares. We estimate ρi by minimizing the
gap between the shares in the data and the average across model simulations, allowing for the spatial

correlation as discussed above. Formally, minρ∈[0,1]I
∑

j∈Io

(
sData
ji − 1

S
∑S

s=1 sji

(
{χs

i}
I
i=1 , ρi

))2
,
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approach, as it allows us to remain agnostic on the sources of risk in the model.

Instead, we can validate our model by projecting the shock probabilities on plausible

sources of risk. Panel B of Figure 5 plots the baseline disruption probabilities by

district. As an alternative approach, we also parameterize regional risk as a function

of observables, and estimate the parameters of this function, as described below.

The underlying assumption of our baseline approach is that anything that is not

captured by the district-level productivities and trade costs is part of the risk of the

district. Of course, in practice, such residuals do not only include flooding risk, but

also many other risk components including institutional risk. As these residuals are

obtained through a procedure similar to the model-inversion common in trade models,

they will also naturally contain model mis-specification, and in particular, other mo-

tives for diversification such as love-for-variety. However, in Figure 6 and Appendix

Figure D2, we show that our estimated probabilities are significantly correlated with

historical and projected average rainfall, coastal flooding, riverine flooding, average

temperature, and dryness.

In Table 4, we run regressions of the model probabilities on the climate variables

(historical and projected 2050) as well as other variables that could also be related

to risk. The climate variables such as daily rainfall, coastal flooding, and average

temperature are all strongly significantly correlated with the probabilities, and the R2

of the regressions are high, around 0.32. To capture institutional features that might

affect risk, we add state fixed effects and a district court congestion control in columns

3 and 4. The coefficients on the climate variables remain similar in magnitude and

significance. It is also well-known that in a cross-section, more productive regions have

lower climate risk. Therefore, significant coefficients on climate variables might simply

be picking up the confounding regional productivity effect. While our residuals are

estimated conditional on regional productivity, to avoid such confounding, in columns

5 and 6 we additionally include productivity controls such as district productivity and

nightlights. The results are similar. Figure D1 further shows that these probabilities

do not show a strong correlation with either the estimated district productivities, nor

the average distance to the state of our study.

Notice this exercise requires solving jointly for the vector of district-level risk that

minimizes the gap between model-implied sourcing shares and data, as all bilateral

sourcing shares are equilibrium objects that depend on the fundamentals and risk of

where s is a model simulation with shocks {χs
i}

I
i=1.
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Figure 6: Model Probabilities and Historical Observables

(a) Avg Daily Rainfall (b) Coastal Flooding (c) Riverine Flooding

.

(d) Std Precipitation Index (e) Average Temperature

Note. We plot the estimated probabilities against historical climate observables. In Figure 6a, we
correlate the probabilities with the average daily rainfall in 2019. Figures 6b and 6c use historical
coastal and riverine flooding respectively. Figure 6d correlates the probabilities with the standardized
precipitation index, a measure of dryness. In Figure 6e, we correlate the probabilities with average
temperature. A more detailed definition of each of the variables can be found in Appendix D.1.

other districts. Further, we cannot exactly match all bilateral sourcing shares in the

data; we choose a single shock probability for each district, but we observe multiple

sourcing shares for that district from all districts in our state. We therefore set up

a minimum distance estimator which aims to match the average sourcing shares for

each origin district observed across all destination districts in our data. In practice,

we match all the bilateral sourcing shares in the data well (Figure 7). As external

validation, the right panel of Figure 7 shows that our model also matches the data

on sales shares well, which are untargeted moments.32

32While our estimated probabilities might seem high, as discussed above, they capture sev-
eral sources of risk. Further, available evidence from Indian businesses suggests that sup-
ply chain disruptions are a key concern. For instance, PwC’s 26th Annual Global CEO Sur-
vey in late 2022 found that 50% of India CEOs were concerned about supply chain dis-
ruptions (https://www.pwc.in/assets/pdfs/research-insights-hub/immersive-outlook-3/
paradigm-shift-in-supply-chain-management.pdf).

32
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Table 4: Regression of model probabilities on observables

Historical Projected (2050) Historical Projected (2050) Historical Projected (2050)

Daily Rainfall 0.104*** 0.0566*** 0.0981*** 0.0440*** 0.0321 0.0212
(0.0264) (0.0182) (0.0215) (0.0137) (0.0276) (0.0139)

Coastal Flooding 1.455*** 1.418*** 2.126*** 1.824*** 3.066*** 1.956***
(0.543) (0.311) (0.665) (0.390) (0.576) (0.337)

Riverine Flooding 0.287 0.359 0.216 0.468* 0.471 0.591
(0.337) (0.295) (0.341) (0.276) (0.334) (0.362)

Avg SPI -0.155 -0.0444 -0.0936 0.000400 -0.350** 0.0552
(0.182) (0.114) (0.158) (0.0969) (0.170) (0.177)

Avg Temperature 0.0519*** 0.0669*** 0.0595*** 0.0700*** 0.0852*** 0.0712**
(0.0175) (0.0188) (0.0177) (0.0181) (0.0322) (0.0310)

Terrain Controls Y Y Y Y Y Y
Institutional Controls N N Y Y Y Y
Productivity Controls N N Y Y Y Y
State Fixed Effects N N N N Y Y

N 271 271 271 271 271 271
adj. R-sq 0.322 0.313 0.339 0.323 0.367 0.356

Note. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. We estimate regressions of the inverse logit of the
estimated model probabilities on observables. In columns 1, 3 and 5 climate variables used are
measured with their historical values. In columns 2, 4 and 6 climate variables used are measured
with the projected values for 2050. Terrain controls include average elevation and ruggedness,
institutional controls include mean court congestion and productivity controls are average nighttime
luminosity and our measure of local TFP. Observables are in levels. A more detailed definition of
each of the variables can be found in Appendix D.1.

Robustness Our baseline approach has the benefit of remaining agnostic about the

sources of disruptions firms face. However, it requires estimating a disruption proba-

bility for each district, which is a large number of parameters. As an alternative, we

assume that the disruption risk in each district is a function of observables, including

the climate and alternative variables in Table 4. We then estimate the coefficients

of this function to minimize the distance between model-implied and observed sourc-

ing shares. This has the advantage that we restrict the number of parameters to

be estimated to 11. However, as we do not observe all sources of risk, there will be

more unexplained variation. Panel A of Figure E6 illustrates district-level disruption

risk implied by this approach. Unsurprisingly, as the observable risk measures were

correlated with the “agnostic” risk from our baseline approach, the results of the

parameterized approach are also correlated with our baseline. Appendix E.1 outlines

this approach in more detail, and presents all our quantitative results under this al-
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Figure 7: Sourcing shares: Model vs. Data

(a) Input Shares (b) Output Shares

Note. In this figure, we plot the sourcing shares in the data against the model. The red line is
a 45-degree line. In the left panel we plot the input sourcing shares. We target average sourcing
probabilities from our state’s districts to the rest of the districts, but we do not force anything to
match the particular sourcing shares of each district. The left panel plots each individual district’s
input shares. The right panel shows sales shares, which are entirely untargeted. The R2 of the left
panel without the outlier is 0.50 and of the right panel is 0.79 without its outlier.

ternative approach. Our main conclusions remain unchanged. Appendix Table D1

summarizes our model calibration.

4.3 Quantitative Results

We first show that the model delivers a strong negative relationship between shock

probabilities and relative nominal wages (and real wages) in the cross-section. Figure

8 shows that both nominal and real wages are negatively correlated with shock prob-

abilities, as we would expect. These results quantitatively validate the key trade-off

in the model between sourcing risk and input costs and illustrate the baseline distri-

butional consequences of risk: higher-risk regions are poorer in real terms. In Figure

D3, we also show that the price index and the variance in real wages are negatively

correlated with the shock probabilities.

Probabilities and sourcing shares. To illustrate the rich heterogeneity in bilat-

eral sourcing patterns and disruption probabilities in the quantitative model, we focus

on one district, Kolkata, in Figure 9. The left panel illustrates the spatial correla-

tion of disruption probabilities between Kolkata and other districts. The right panel

shows the sourcing shares of Kolkata from other districts. Firms diversify, but sourc-

ing strategies depend on geography – they source more from relatively geographically
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Figure 8: Shock probabilities and wages

(a) Nominal Wages (b) Real Wages

Note. In this figure, we plot model-derived nominal (left panel) and real wages (right panel) against
the estimated shock probabilities. Figure D3 further plots the price index and the variance in real
wages against the shock probabilities.

closer areas than, say, the far south of India. Firms also source from districts less

spatially correlated with their own. Notice that the sourcing patterns include several

zeros in equilibrium.

Figure 9: Spatial correlation and sourcing shares: Kolkata

Note. In this figure we plot the estimated spatial correlation in disruption probabilities with other
districts for Kolkata (left panel) and the sourcing shares of Kolkata district with all other districts
(right panel).

Shock propagation Our framework can also be used to assess the effect of disrup-

tions ex-post for aggregate welfare. In Panel A of Figure 10, we show, for each origin

district, the impact of a disruption in that district on the real wages of all other dis-
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tricts (including itself). We use the size of the labor force in each district to compute

the weighted average of the effect. The impact of a realized disruption in a district

on the rest depends on the affected district’s importance as a supplier. The effects

vary widely by district, with shocks that materialize in lower-risk or more productive

districts that are more important as sourcing locations having larger welfare conse-

quences. While the “own” effect of the shock is important, a large component (62.6%

on average) of the aggregate welfare changes happens through the propagation of the

shock (Panel B of the figure). Here, we plot the aggregate welfare changes caused by

the incidence of a disruption in each origin district, excluding the own effect. Finally,

Panel C illustrates the number of districts that experience a welfare decline when an

origin district experiences a disruption.

Figure 10: Shock Propagation

(a) Weighted Average Wel-
fare Change

(b) Weighted Average Wel-
fare Change in Other Regions

(c) Number of regions with
Welfare Decline > 1%

Note. In Panel A, for each district, we compute the impact a materialized disruption has on the real
wages of all other districts (including itself). We then use the labor force in each district to calculate
the weighted average of the impact. Panel B removes the own-impact in real wages of a disruption
to isolate the “propagation” effect to other districts. Panel C reports the number of districts that
experience a welfare decline when the district experiences a disruption.

4.4 Trade Counterfactuals

We compare welfare in the calibrated model to regional autarky and free trade.

Throughout, we decompose the welfare effects on the changes in expected real wages

and their volatility, capturing the first- and second-moment effects in the model.

Expected welfare under baseline and autarky. The comparative statics in

Section 3 show that with identical regional fundamentals, calibrated trade costs, and
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independent disruption probabilities, expected real wages are lower for all regions

with costly trade than in autarky, and their variance is also lower. To assess the

quantitative relevance of this mechanism in the calibrated model with varying regional

fundamentals, estimated trade costs, and disruption probabilities that are spatially

correlated, we compute the difference in expected real wages in the baseline model

with the model-implied expected real wages given the same regional fundamentals,

disruption probabilities, and infinite trade costs.

Figure 11 illustrates the spatial variation of expected real wages in the baseline

model and the autarky counterfactual. On average, expected real wages are 3.1%

higher in autarky than in the baseline model. The variance of real wages is 9.2%

higher in autarky, validating the quantitative relevance of the main comparative stat-

ics exercises. Overall, autarky is welfare decreasing for all regions. Welfare decreases

on average by 7.3%, as the change in volatility more than offsets the gain in log ex-

pected real wages. 0.74% of districts see real wage declines, unlike in the comparative

statics where all regions had higher real wages in autarky.

Expected welfare under baseline and free trade. In contrast, Figure 11 shows

that expected real wages are higher for all regions under a free trade counterfactual,

and their volatility is lower, so the welfare gains from free trade are large. To im-

plement free trade in our quantitative exercise, we set the iceberg trade costs to 1

between all districts. Under free trade, expected real wages are, on average, 5.9%

higher than in the baseline, whereas the variance of real wages is 2.8% lower. Welfare

is on average 8.9% higher and no district is worse off under free trade.

4.5 Climate Change Counterfactuals

We next study the implications of varying climate risk in our model. We estimate

the share of our model-implied shock probabilities that can be explained by climate-

risk-related variables such as rainfall or flooding events. Through the lens of our

model, these probabilities capture the risk firms assign to each district. However, as

discussed above, the risk associated with each region can be due to climate risk, as well

as other regional characteristics such as infrastructure or governance. In this section,

to highlight the implications of changing climate risk, we hold all other sources of risk

constant and change only the climate risk of each region relative to the baseline.

To discipline how climate risk changes, we proceed as follows: First, we regress
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Figure 11: Quantitative results

Panel A: Baseline

(a) Expected Welfare (b) Log Expected Real Wages (c) Variance of Real Wages

Panel B: ∆ in Autarky

(d) Expected Welfare (e) Log Expected Real Wages (f) Variance of Real Wages

Note. Panel A shows welfare, expected real wages and their variance in the baseline calibrated model.
Panel B shows percentage changes in these variables under the autarky counterfactual relative to
the baseline scenario. The maps for change under free trade can be found in Appendix D5

the inverse logit transformation of our probabilities on historical measures of rainfall,

coastal flooding, riverine flooding, temperature, and the SPI presented in Figure 6.

Second, we use the estimated coefficients, shown in Column 1 of Table 4, to predict

the counterfactual disruption probabilities in 2050 for our five climate measures, while

holding constant the unexplained variation in these probabilities. This method yields

how the probabilities would change if climate variables evolve as predicted in the

RCP 4.5 scenario of the International Project for Climate Change (IPCC).

Panel A of Figure 12 illustrates how these probabilities change across space in our

main counterfactual. As the figure makes clear, there is wide variation in the changes

in climate risk, with the northeast and parts of the west coast seeing large increases
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Figure 12: Counterfactuals: Climate Risk Increase

(a) A: ∆ in Probabilities (b) B: ∆ in Welfare

(c) C: ∆ Input Prices and Probabilities (d) D: ∆ and Initial Welfare

Note. In this figure, we plot the change in probabilities of climate risk (panel A), the change in
welfare (panel B), the relationship between the change in input prices and changes in probabilities
change in expected real wages (panel C), and the relationship between the change in welfare in the
counterfactual and the welfare at baseline when climate risk increases as described in Section 4.5.

in risk, while the central part of the country sees decreases in risk. On average, risk

increases by 1.1 percentage points. Panel B illustrates the change in expected welfare

in this counterfactual. Welfare on average decreases by 2.01%. There is wide spatial

variation, with a range of 3.11pp, and some of the less risky regions see welfare gains.

62.73% of districts see real wage declines.

To understand the mechanisms at work, Panel C shows how the change in dis-

trict supplier prices correlates with changes in district risk. Input prices offered by

intermediate firms from the district decrease the most for districts experiencing the

largest increases in risk. This negative terms-of-trade effect arises from the decline in

nominal wages in these risky regions in equilibrium.33

33Recall input prices pi =
wi

zi
. Effectively, the nominal wages in risky regions are decreasing, by

more than the increase in risk as firms diversify away from riskier regions.
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Panel D illustrates the change in welfare, and relates it to the initial district wel-

fare. This highlights the distributional consequences of climate change in our quan-

tification: the change in welfare is positively correlated with initial welfare. In other

words, initially well-off regions see relative welfare improvements following climate

risk increases, while initially worse-off regions see welfare declines. A key quantita-

tive finding is that here, sourcing diversification of firms amplifies the effects of climate

risk increases. Climate risk will not only subject riskier regions to increased shocks,

but also to a decrease in real wages as firm supply chains become less reliant on these

regions.34 Table 5 summarizes the quantitative results across counterfactuals.

Table 5: Model Counterfactuals: Summary

Counterfactual ∆ in Welfare ∆ in log Expected Real Wages ∆ in Real Wage Volatility % districts
Avg. change Range Avg. change Range Avg. change Range Real wage declines

Baseline risk
Autarky -7.29 2.92 3.10 1.87 9.25 3.99 0.74%
Free Trade 8.94 2.30 5.92 1.70 -2.84 0.96 0.00%

Alternative risk
Climate change -2.01 3.11 -1.96 3.10 0.15 0.13 62.73%
∆ in Rainfall and Flood Risk Only -0.24 3.52 -0.25 3.46 0.06 0.13 25.09%
∆ in Temperature and SPI Risk Only -1.76 2.69 -1.72 2.64 0.06 0.13 86.72%

Note. This table shows statistics of the distribution of percentage changes between the baseline sce-
nario with current climate risk and costly trade and other scenarios, weighted by district population.
Range refers to the interquartile range.

Decomposing the effects of climate change adaptation. As a final exercise,

we decompose the change from our baseline economy to the counterfactual economy

with increased climate risk into three components

∆Wi = Wi(G
′,Mi(G

′,w′))−Wi(G
′,Mi(G

′,w))︸ ︷︷ ︸
G.E. Effect

(26)

+Wi(G
′,Mi(G

′,w))−Wi(G
′,Mi(G,w))︸ ︷︷ ︸

P.E. adaptation

+Wi(G
′,Mi(G,w))−Wi(G,Mi(G,w))︸ ︷︷ ︸
Direct effect of climate change

,

where X ′ refers to the changed climate risk scenario. The direct effect captures the

effect of changing climate risk, without firm adaptation. In practice, we start in the

baseline equilibrium, but simulate a model where shocks are drawn from the new

distribution with changed climate risk. Agents’ beliefs in this step of the decompo-

sition are therefore not rational, and we refer to this as climate “myopia”. The P.E.

34This is not a mechanical result, but rather, depends on the spatial distribution of climate risk,
the initial equilibrium, and the IPCC predictions for which areas get riskier. If initially higher welfare
areas saw larger changes in predicted climate risk, they would not see relative welfare increases.
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Figure 13: Distributional Implications of Climate Change Adaptation

Note: This figure plots the terms in 26, binning regions into 50 bins. The x-axis orders regions by
their change in disruption probabilities. The red bars show direct effects, blue bars show the P.E.
effects and green bars show the G.E. effects.

effect considers the effect of firm adaptation to the climate risk in partial equilibrium,

holding all prices fixed. Finally, the general equilibrium effects allow for equilibrium

price adjustment.

Figure 13 contains the results. The red bars show the direct effects of changing

climate risk, which are heterogeneous across regions. The blue bars have the wel-

fare effects of partial equilibrium adaptation to new risk. Holding prices fixed, such

adaptation is always beneficial, even for regions with increased risk. For some dis-

tricts the P.E. term offsets the increased direct risk. The green bars show the general

equilibrium effects on prices. Regions facing the largest increases in disruption risk

experience significant welfare declines due to general equilibrium price adjustments.

As firms across all regions reduce demand for their inputs, wages fall, compounding

welfare losses beyond the direct impact of rising risk. These regions fare worse than

they would if firms were myopic and did not to adapt to the heightened risks.

Robustness and extensions. In addition to our main climate counterfactual, we

also consider scenarios where only rainfall and flood risk, or only temperature changes

and SPI changes occur. Table 5 summarizes the results. While in both cases aver-

age welfare declines and there is wide spatial variation, under the scenario of only

temperature/SPI changes, 86.72% of districts see real wage declines, while with only

rainfall/flood risk increases, 25.09% of districts see real wage declines.

Appendix E estimates two alternative models and conducts the counterfactuals in
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these cases. We first consider a model where the district probabilities are obtained

from projections on climate-related variables, as discussed in Section 4.2. Second, we

consider a model where the input bundle is CES and so features love-for-variety effects,

with a substitution elasticity of 3.1 (Peter and Ruane, 2023). Table E3 summarizes

the results for these two alternative models. Strikingly, the two models deliver very

similar implications for the climate counterfactuals, in terms of the welfare declines

and spatial variation.

Appendix C.4 shows that mean and median product-level inventories are less than

a month’s sales and that inventories are not correlated with the prevalence of multi-

sourcing. While inventories and multisourcing would appear to be alternative strate-

gies for risk mitigation, in our data it appears firms are systematically choosing mul-

tisourcing. We note that our calibrated model without inventories implies that sales

declines less than inputs upon the incidence of a shock. Equation (10) illustrates

that the partial elasticity of firm profits to delivered inputs is (1−β)(σ−1)
β+σ(1−β)

. Quantita-

tively, given our parameter calibration, this implies that sales fall by 47% of the fall

in inputs, which is very similar to the 44% drop observed in the event-studies.

5 Conclusion

Climate risk is an increasingly important concern worldwide, with large projected eco-

nomic impacts. Adaptation of firm supply chains to perceived climate risk is a crucial

channel through which economies might adjust to climate risk. This paper provides

empirical evidence suggesting firm supply chains are structured taking climate risk

into account. Our new model of firm supply chain decisions under risk incorporates

key patterns we see in the data – firms face a trade-off between lower risk and higher

input costs. Quantitative results from the model show that, on the one hand, input

sourcing decisions mitigate the effects of climate risk on welfare, especially through

a reduction of the volatility of output, as firms diversify their suppliers. Yet, on the

other hand, they amplify the distributional effects, as regions that face increasing

climate risks will also suffer lower real wages from the general equilibrium effects of

firm adaptation.
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Supplemental Online Appendix

A Details on the Firm-to-Firm Data

We illustrate a stylized example of our establishment-level networks data in Figure A1.

As the diagram shows, we observe all transactions where one node of the transaction

is within the state. This includes all transactions between establishments within the

state (the yellow lines), any inflows from or outflows to the rest of the country (the

blue lines), and all international imports and exports (the green lines).

Figure A1: Stylized Example of Establishment-Level Network

Notes: Stylized example of establishment-level data. The upper half represents the country, and

upper left quadrant represents the state in question. The data includes all transactions within the

state, and all transactions where one node of the transaction (either buyer or seller) is in the state.

The data report value and quantity of traded items, so we can construct unit values.

To do this, we aggregate values and quantities at the four-digit HSN/month/transaction

level, and then construct implied unit values. We can then collapse the data at the

4-digit HSN/month level to construct average unit values, the number of transactions

between each seller and buyer pair, and the total value of the goods transacted. This

is the foundation of the firm-to-firm dataset we use in the analysis. Additionally,

we can aggregate these data to the buyer level, which we use in our reduced-form

section. Table A1 summarizes our primary variables of interest using this dataset.

In Table A2 we present statistics on the number of buyers per supplier and suppliers

per buyer. Despite differences in region sizes, the distribution of firms follows closely

the one documented by Alfaro Ureña et al. (2018) for Costa Rica.
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Table A1: Summary Statistics for Main Variables

Outcome Mean p25 p50 p75

Separation Rate (%) 30.9 0 16.67 52.78
Entry Rate (%) 74.06 0 50 106.67
Net Separations (%) -43.12 -70 0 0
Real Input Value (log) 14.91 12.48 14.55 16.96
Real Sales (log) 16.33 13.57 16.05 18.66
Avg. Supplier Size (millions of rupees) 106.42 9.65 34.04 127.49
Avg. Supplier Outdegree 43.04 3.3 10.97 31.99
Share Purch. Lgst. Supplier (%) 52.39 31.06 47.84 71.82
Number Products 12.05 3 7 14
Share Purch. Diff. Prod. (%) 60.19 21.25 72.78 97.81
Supply Chain Depth 32.32 28.15 31.46 36.35
Number Suppliers 12.35 3 7 14
Avg. Distance (km) 486.71 97.13 251.65 712.75
Share Purch. Non-Home State (%) 38.54 0 24.42 78.48

Note. Summary statistics for key outcomes to describe the network calculated in December
2019-February 2020. Number of firms included in calculations: 136,562.

Table A2: Distribution of buyers and suppliers

Mean SD 10th 25th 50th 75th 90th 95th 99th

N suppliers per buyer 8.0 23.6 1 1 3 8 18 29 72
N of buyers per supplier 16.3 55.3 1 1 4 12 36 65 194

N supplier districts per buyer 3.5 4.4 1 1 2 4 7 11 21
N buyer districts per supplier 3.1 3.0 1 1 2 4 7 10 14

Note. We calculate network characteristics for the year 2019. The top two rows compute the
number of buyers per supplier and suppliers per buyer. The bottom rows compute the number
of supplier districts per buyer and number of buyer districts per supplier.

B Empirical Facts Appendix

In Table 1 we show that firms seem to multi-source products even within detailed

product categories. We proceed to show that such results is not driven by retailers and

wholesalers. While we cannot directly identify retailers and wholesalers in our data,

we can use the pattern of their transactions to infer firms that likely belong to those

industries. For retailers, we expect that they would sell their goods predominantly

to final consumers instead of shipping their goods to other firms. Hence, they should

show up as having zero sales in our data. For wholesalers, we expect that they

would not transform the products they buy in order to sell them. Hence, we identify
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as wholesaler firms that buy and sell the same HSN-4 products. Of course, these

classifications will be overestimating retailers and wholesalers, as manufacturing firms

might buy and sell the same 4-digit product or not ship goods to other firms. However,

we want to corroborate that our results are robust to excluding these firms.

From our sample in 2019, we have a total of 195,872 firms. Of those, 7,867 fall

under our classification of wholesalers and 137,574 fall under our classification of

retailer. As shown in Table B1, the distributions of regions sourced from stay fairly

constant when excluding such firms. Similarly, we show that the results are consistent

when we look at the number of suppliers per product as opposed to supplier districts.

As shown in Table B2, there is a slightly larger fraction of firms that source from more

than one supplier than when looking at sourcing from different supplier districts.

Table B1: Firms that source from multiple districts (excluding wholesale and retail)

Number of districts Share of buyers
Share of buyers

x HSN-4
Share of buyers

x HSN-8

Firms Value Firms Value Firms Value

1 12.0% 1.5% 69.4% 9.6% 80.9% 21.6%
2 13.4% 2.0% 16.4% 9.8% 12.6% 15.4%
3 12.4% 2.8% 6.4% 8.9% 3.5% 11.1%
4 10.6% 3.0% 3.0% 8.0% 1.4% 10.0%
5 8.9% 3.1% 1.6% 7.5% 0.6% 5.9%
6 7.3% 3.7% 1.0% 6.4% 0.3% 4.5%
7 6.0% 3.4% 0.6% 4.5% 0.2% 4.5%
8 5.0% 3.8% 0.4% 4.6% 0.1% 2.9%
9 4.1% 3.4% 0.3% 4.0% 0.1% 3.1%

10+ 20.3% 73.3% 0.9% 36.6% 0.2% 21.1%

Note. Column 1 aggregates the data at the firm level and computes the share of firms that source
from a certain number of districts. Column 2 calculates the fraction of total value purchased by
number of supplier districts sourced from. Columns 3-4 aggregate the data at the firm-by-4-digit
product level, and Columns 5-6 at the firm-by-8-digit product level. We exclude likely-retailers and
likely-wholesalers from the analysis.

Next, we show that firms that have larger purchases of a given product are more

likely to source from multiple regions. To see this, we rank all firm-by-8-digit HSN

pairs into percentiles based on total purchases, where the higher percentiles include

the firm-product pairs with the higher purchase volume. As shown in Figure B1,

the smallest firm-product pairs tend to only source from a single supplier. However,

towards the end of the distribution, the largest firm-product pairs source, on average,

from more than one region. Firms above the 95th percentile source, on average, from

two districts, and firms in the top percentile source from four. This suggests that

larger, more productive firms are more likely to multisource.
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Table B2: Share of firms that source from multiple suppliers

Number of suppliers Share of buyers
Share of buyers

x HSN-4
Share of buyers

x HSN-8

Firms Value Firms Value Firms Value

1 28.6% 2.3% 70.6% 15.7% 81.7% 24.5%
2 16.0% 6.7% 15.0% 9.2% 11.7% 17.1%
3 10.4% 2.3% 5.7% 7.2% 3.4% 12.7%
4 7.4% 2.2% 2.9% 5.8% 1.4% 8.4%
5 5.4% 1.8% 1.6% 6.5% 0.7% 5.2%
6 4.2% 1.8% 1.0% 4.8% 0.4% 4.7%
7 3.4% 1.8% 0.7% 3.5% 0.2% 3.0%
8 2.7% 1.6% 0.5% 2.9% 0.1% 2.6%
9 2.3% 2.0% 0.4% 3.3% 0.1% 2.5%

10+ 19.6% 77.4% 1.6% 41.1% 0.3% 19.4%

Note. In this table we look at number of supplier firms instead of number of supplier districts.
Column 1 aggregates the data at the firm level and computes the share of firms that source from a
certain number of suppliers. Column 2 calculates the fraction of total value purchased by number
of suppliers sourced from. Columns 3-4 aggregate the data at the firm-by-4-digit product level, and
Columns 5-6 at the firm-by-8-digit product level.

Figure B1: Number of supplier districts by total purchases

Note. We rank all firm-product pairs into percentiles (1-100) based on the volume of total purchases
in 2019. For each percentile (in the horizontal axis), we compute the average number of districts
the firm-product pairs source from.

However, firm size does not drive the descriptive patterns shown in Figures 1a-1c.

In Table B3, we document that our descriptive patterns under Fact 2 are not driven

by firm size, product composition or capacity of suppliers. We run a regression at the

product-firm level as shown in equation 27.
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log yj,p = β1(Firm j multisources p) + γXj + δp + ϵj,p (27)

where log yj,p is the log of the average characteristic of a firm’s suppliers such as

average distance to suppliers, rainfall of supplier districts, riverine flooding of sup-

plier districts and prices paid to suppliers. The key explanatory variable here is

1(Firm j multisources p) which is a dummy that indicates whether the firm sources

product p from more than one district. Importantly, we control for product fixed ef-

fects, the log of total purchases by firm j, and the log average sales of suppliers.

Table B3 shows that our descriptive patterns are robust to adding these controls.

Multi-sourcers buy products from distances 76% farther than single-sourcers. They

source from districts with 2.3% lower rainfall and 1.4% lower river flooding levels.

Finally, they pay 44% higher input prices than single sourcers. Product fixed effects

help rule out that the differences between single and multi sourcers are driven by

differences in product quality. The own purchases control rules out that the patterns

are driven by differences in firm size (e.g. large firms multisource more and pay

higher prices). Finally, the control for supplier size helps us rule out that the reason

for multisourcing is that suppliers don’t have enough capacity to meet demand.

Table B3: Supplier characteristics by number of districts sourced from

Log (Distance to suppliers) Log(Daily Rainfall) Log(Historical riverine flooding) Log(Price of inputs)

1(Multisourcer) 0.760*** -0.0229*** -0.0140*** 0.441***

N 739,520 739,520 739,520 739,520
R-sq 0.327 0.271 0.124 0.545

Note. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. We run a cross-sectional regression at the firm (j), 8-digit
product (p) level. The outcome is the log average distance to suppliers (column 1), log average daily
rainfall at suppliers’ district (column 2), log average riverine flooding at suppliers’ district (column
3) and log average price of inputs (column 4). The main regressor is a dummy variable on whether
the firm sources the HSN-8 product from more than one district. All regressions include HSN-8
product fixed effects and controls for log size of the firm and log average size of suppliers.

B.1 Responses to flooding events - additional results.

B.1.1 Climate Data

We use data from the Dartmouth Flood Observatory to identify geocoded flooding

events throughout India for our event study analysis. As shown in Figure B2, we

identify 19 events of large monsoonal floods throughout India between 2018 and
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Figure B2: Monsoonal rain floods, 2018-2020

Note: The figure plots the geographic coverage of all large floods that occurred between 2018 and
2020, as described in the Dartmouth Flood Observatory.

2021. For our event study analysis, we limit the set of floods to those that occurred

outside of our state, for which we have at least 3 months of data before and after the

flood, and where at least 200 buyers in our state transacted with affected suppliers

the period before the flood. These restrictions leave us with seven large flood events,

which we use in our analysis Fact 4 in Section 2.2.

B.1.2 Two-way Fixed Effects Analysis

In this Section, we delve deeper into the event-study results presented in Figure 2. For

expositional clarity, we run difference-in-difference specifications which we summarize

in Table B4. In the top panel, we present the two-way fixed effects specifications with

continuous treatment as described below. In the middle panel, we present the results

for a binary treatment. Finally, in the bottom panel, we present the results using the

Local Projections Difference-in-Differences (LP-DID) estimator developed by Dube

et al. (2023). This last set of estimates further accounts for issues raised by recent

discussions on two-way fixed effects methods. We begin with documenting the direct

effect on suppliers in flood-hit zones, where we examine outcomes yj,t,k,τ for firm j,

in period t, industry k, and event τ .

yj,t,k,τ = α1 (Exposed to flood)jτ ×Postt,τ +
x=+5∑
x=−5

[δτ,x + βxXj,x<0]+δj+δk,t+ϵj,t,k,τ . (28)

Here, “Exposed to floodjτ” takes a value of 1 if firm j was exposed to a particular

flood. We index the months before and after flood happened by x, with x = 0 being
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the month the flood τ occurs. We include a wide range of high-dimensional fixed

effects to account for confounding shocks. These include firm fixed effects δj that

control for firm-specific time-invariant differences; industry-by-time fixed effects δk,t

that control for industry-specific shocks; and flood event-time since flood fixed effects

δτ,x that control for aggregate trends around the flood event that affect all firms

(including those not in the flood-exposed areas). We also control for firm size-specific

shocks, by controlling for sales in the five months before the flood Xj,x<0, interacted

with time-since flood indicators. In all difference-in-difference results we restrict the

post period to 3 months after the flood. Consistent with the results in Figure 2a, we

find that affected sellers experience a 13% decline in sales, on average, with respect

to non-affected firms the three months after the flood occurs.

Next, we look into the effect of a flood for buyers located in our state. We use the

existing supplier network (in the 5-months leading to the flood) as a measure of the

exposure to the disruption, as described in equation B.1.2.

(Supplier Exposure)jτ =
N∑
i

si,j,τ,x<0 × 1 (Supplier i exposed to flood in τ) ,

where si,j,τ,x<0 is the value of purchases that firm j buys from firm i, relative to firm

j’s total purchases, over the five months before the flood. We then standardize this

index and interact it with a post flood indicator to study how buyers were affected

when their suppliers were hit. We examine outcomes yj,t,k,τ for firm j, in period t,

and industry k, measured in event-time (since flood) τ equation 29:

yj,t,k,τ = γ (Flood Exposure)jτ ×Postt,τ +

x=+5∑
x=−5

[δτ,x + βxXj,x<0] + δj + δr,k,t + ϵj,t,k,τ . (29)

The fixed effects are similar to equation 28 but we add an industry-region-time fixed

effect δk,r,t to control for local demand shocks affecting the region-industry of the

firm. In columns 2-4 of Table B4, we present the results for the outcomes of log

total purchases (column 2), log purchases of returning suppliers (column 3) and log

purchases of new suppliers (column 4). Returning suppliers are those who transacted

with the firm within 3-months before the shock, and we track the purchases from

that set of suppliers throughout time. New suppliers are defined as suppliers who

transact with the firm in a given period who have not transacted before. Difference-

in-difference results are consistent with the event studies in Figures 2b and 2c.
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In column 5 of Table B4, we present the results for the outcome of buyer sales.35

Buyers with one standard deviation higher exposure experience a decline in sales of

2% relative to buyers with average exposure. When considering the binary treatment

in the second panel, we find that firms exposed to the flood through their suppliers

experience a decline of 7% relative to firms that are not exposed.

When focusing on the result for sales with binary treatment, we find that for

every 1% decrease in the purchases for exposed buyers, sales drop by 0.44% (exposed

buyers decrease purchases by 16% and sales by 7% relative to non exposed buyers).

We compare this result to the one implied by our model which, using a back-of-the-

envelope calculation, indicates that for every 1% decline in purchases, sales decrease

by 0.47%. The close result is reassuring given that our sales result is untargeted by

our estimation process.

Table B4: Regression results on the impact of floods.

Supplier sales
Buyer Purchases -

Total
Buyer Purchases -
Returning Suppliers

Buyer Purchases -
New suppliers

Buyer Sales Input prices

Continuous treatment

Standardized exposure × 1(τ ≥ 0) - -0.05*** -0.05*** -0.03*** -0.02*** -0.009
- (0.003) (0.003) (0.01) (0.01) (0.01)

N - 1,218,663 1,160,881 606,655 468,280 1,912,563

Binary treatment

1(Exposure ≥ 0.1) × 1(τ ≥ 0) -0.13*** -0.16*** -0.24*** -0.13*** -0.07** 0.004
(0.02) (0.01) (0.01) (0.02) (0.03) (0.01)

N 1,604,955 1,218,663 1,160,881 606,655 468,280 1,912,563

Local projections with binary treatment

Difference between pooled pre and post period -0.29*** -0.17*** -0.12*** -0.15** -0.03 0.007
(0.06) (0.02) (0.03) (0.08) (0.06) (0.09)

N 742,966 897,777 829,534 130,600 413,392 716,388

Note. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. Column 1 presents the estimates for equation 28 for
suppliers affected by the floods. Columns 2-5 present the results for equation 29 different outcomes
of downstream firms. Column 6 presents a regression at the firm-product-time-event level using
unit value of inputs as the outcome. In all cases, we restrict the post period to cover up to three
months after each flood. Standard errors are clustered at the district level. The top panel presents
results for the standardized exposure. The middle panel presents the results for a binary treatment.
For supplier sales the binary treatment is whether the supplier was affected by the flood or not. In
columns 2-5 the binary treatment is whether the buyer exposure is more than 10 % of purchases. In
column 6 the binary treatment is whether the buyer-product exposure is above 10% of purchases.
We present the local projections estimates in the bottom panel, where we compute the difference
between the post and pre-treatment coefficients. We calculate standard errors for the difference
using a bootstrap with 100 repetitions.

35As our data does not include sales made directly to consumers, we need to impose some additional
restrictions to ensure that we focus on firms that consistently sell to other firms. We restrict the
sales sample to firms that are observed selling something to other firms every month for the last nine
months prior to the flood. We also restrict the sample to be the same as the purchases sample, so
we consider the log of 1+sales in cases where the firm is not observed selling anything that period.
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Products and input prices. An advantage of our version of the firm-to-firm trade

data is that it has detailed product codes and unit values. This allows us to examine

product-specific trades and changes in prices as a result of upstream suppliers being

exposed to a shock. We first transform the data to the buyer-by-product-by-time level.

Our specification is similar to Equation 29, but with a product dimension that allows

us to include event-time, industry-district-product-time, and firm-by-product fixed

effects, along with controls for pre-period firm-by-product sales interacted with time

indicators. In column 6 of Table B4, we study the evolution of product-specific prices

for transactions that occur around the flood. While noisier, results are suggestive of

a slight increase in price levels three months after the flood when using either the

binary treatment or the local projections specification.

New advances in two-way fixed effects methods. Recent econometric advance-

ments in two-way fixed effects methods point out that staggered treatment can lead to

the negative weighting of certain disaggregated treatment effects (Goodman-Bacon,

2021). New methods developed by Borusyak et al. (2024); Callaway and Sant’Anna

(2020) provide consistent and interpretable estimates. Yet, our setting offers some

further challenges. Our “treatment” turns “off” and “on” and perhaps “on” again,

and our specifications control for various time-varying covariates, and a wide variety

of other fixed effects, making some of these new advances challenging to apply in our

setting. A new Local Projections Difference-in-Differences (LP-DID) estimator devel-

oped by Dube et al. (2023) allows us to recover interpretable estimates in a flexible

and efficient manner.

We present the results from this LP-DID estimator in the bottom panel of Table

B4, which show similar patterns. We further implement the LP-DID for the event

study analysis as well. In Figure B3b, we once again reproduce the same pattern as

before: downstream purchases fall for the first few months, and thereafter recover

by month 4. The results from the LP-DID method qualitatively resemble our main

results for all other outcomes as well. Figure B3a shows the sales of affected suppliers,

and Figure B3c contrasts existing vs. new suppliers. These patterns once again show

that sales of affected suppliers fall, and that purchases from buyers decrease from

both new and existing suppliers.
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Figure B3: LP-DID Event Studies

(a) Sales of affected suppliers (b) Downstream purchases (c) Existing vs new suppliers

Note. Event studies using the Local Projections Difference-in-Differences (LP-DID) approach, dis-
cussed in Dube et al. (2023). Figure B3a includes event-time, industry-district-product-time, and
firm-by-product fixed effects, and controls for pre-period firm-by-product sales interacted with time
indicators. Figure B3b and B3c include firm, time, event-time, and industry-district-real time fixed
effects, and demand controls and log pre-period purchases-time controls. Standard errors clustered
at the district level.

B.2 Dataset construction

In Section 4.2, we use multiple sources to correlate our model implied probabil-

ities with observables related to supply chain disruption risk. We consider five

climate-related measures: rainfall, coastal flooding, riverine flooding, temperature,

and drought conditions. Our climate data is available for grid areas that are much

more detailed than our 271 regions. We use shape files to overlay our regions to the

available maps and calculate the average measure of the climate variables within each

of our regions. Coastal and riverine flooding are taken from the World Resources In-

stitute’s Aqueduct Floods Hazard Map. Historical flooding is defined as present-day

meters of flooded area. Projected flooding is the 2050 expected meters of increase in

flooded areas. We use 10-year floods and the RCP 4.5 as our baseline projection.

Historical and projected temperature and drought data is taken from the IPCC

WG1 Interactive Atlas. Historical temperatures are the average daily degrees centi-

grade in 2005 (the latest year available for historical data). Droughts are measured

with the SPI index based on precipitation anomalies over the last 6 months. A lower

SPI corresponds to more severe drought conditions. Both temperature and SPI are

observed monthly, and we take the average across 12 months to get a value for the

gridcell in 2005. Projected data for 2050 is calculated assuming a risk scenario of

RCP 4.5 and using a risk model of NOAA global circulation model and the Swedish

Meterological and Hydrological Institute’s local circulation model.

Daily rainfall data is taken from the India Meteorological Department and mea-
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sured in millimeters. We take the average across all days in 2019 for each district.

For predicted rainfall, we first extract the average historical (measured in 2005) and

predicted 2050 rainfall from the IPCC WG1 Interactive Atlas, using the same settings

as for temperature. We then compute the change for each district between 2005 and

2050, and apply the implied yearly change to update the 2019 values to 2050.

The non-climate variables mostly come from the Socioeconomic High-resolution

Rural-Urban Geographic Platform for India (SHRUG). Elevation is defined as the

average elevation in meters of each district while terrain ruggedness is the Terrain

Ruggedness Index expressing elevation differences between adjacent pixels. The night-

lights luminosity index aims to capture economic activity by detailed regions. Finally,

court congestion is taken from the Development Data Lab and measures the average

delay in days for the courts in each district.

C Theory Appendix

C.1 Equilibrium Definition

An equilibrium of this economy is a set of state-contingent consumption, {qi(ω,χ)}χ∈G(χ),

and final-good labor demand plans,
{
ℓGi (ω,χ)

}
χ∈G(χ)

, intermediate goods producers

labor demands,
{
ℓIi
}
, an allocation of input orders, {Mji}j∈I,i∈I , and a vector of prices

and wages,
{
wi(χ), p

G
i (ω,χ),Pi(χ), p

I
i

}
i∈I,χ∈G(χ)

such that:

1. Given prices and wages, the representative consumer of each location maximizes

its utility.

2. Given prices and wages, firms in each location maximize expected profits.

3. Labor and goods Markets clear state by state∫
ω∈[0,1]

ℓGi (ω,χ) + ℓIi = Li ∀i ∈ I,χ ∈ G(χ)

qi(ω,χ) = ϕi

(
ℓGi (ω,χ)

)β∑
j=1

χjMji

1−β

∀ω ∈ [0, 1] , i ∈ I,χ ∈ G(χ)

∑
j

τijMij = ziℓ
I
i ∀i
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4. Trade is balanced state by state∑
j

pMj τjiMji =
∑
j

pMi τijMij ∀i ∈ I,χ ∈ G(χ)

C.2 Proofs

Proposition 1: Proof. Since the cost of materials is linear in Mji and the con-

straints are conventional (linear) non-negativity constraints, it suffices to show that

the expected operating profits function Eχ (π(M i;χ)) is concave in the vector M i.

The expectation operator preserves the concavity of π(M i;χ) which is the only thing

required to prove. The concavity of ex-post profits, π(M i;χ), follows from the fact

that (1−β)(σ−1)
β+σ(1−β)

< 1.

Lemmas 1 and 2: Proof. Conditional on some state of the world, χ, ex-post

aggregate profits are given by,

∫
ω∈[0,1]

πi(ω;χ)dω =

∫
ω∈[0,1]

pi(ω;χ)qi(ω;χ)− wi(χ)ℓi(ω;χ)−
∑
j

pMji (χ)Mji(ω)

 dω.

Using the assumption of a unit mass of homogenous firms in a region, ex-post ag-

gregate profits are then

πi(χ) = pi(χ)qi(χ)− wi(χ)ℓi(χ)−
∑
j

pMji (χ)Mji.

where pi(χ)qi(χ) corresponds to aggregate revenues from the final goods sector,

wi(χ)ℓi(χ) are payments to labor by final goods producers, and
∑

j p
M
ji (χ)Mji is

total expenditure on intermediate inputs.

As final goods firms are monopolistically competitive and the final goods aggre-

gator is CES, standard algebra shows that revenues minus labor costs are a constant

fraction of aggregate income:

pi(χ)qi(χ)− wi(χ)ℓi(χ) =
β + σ(1− β)

σ
Yi(χ).

From goods market clearing and trade balance, it is easy to show that aggregate

income is equal to the aggregate revenues of the final goods producers, Yi (ω) =

pi(χ)qi(χ). Plugging this expression in the equation above, we get an aggregate

xii



labor demand equation as a function of wages and aggregate income,

ℓi(χ) =
β(σ − 1)

σ

Yi(χ)

wi(χ)
.

Turning to expenditure in intermediates inputs, multiplying the first order condi-

tions defined in Equation 12 by Mji, and adding up across origins j, we obtain:

Eχ

λi(χ)

Θi(χ)

∑
j∈I

χjMji


(1−β)(σ−1)
β+σ(1−β)

−
∑

pMji (χ)Mji


 = 0.

We can then plug the expression for Θi(χ) and for the stochastic discount factor

λi(χ) =
1

Yi(χ)
to simplify the expression above as:

Eχ

[
1

Yi(χ)

(
(1− β)(σ − 1)

σ
Yi(χ)−

∑
pMji (χ)Mji

)]
= 0.

Trade balance and zero profits for intermediate goods producers imply that
∑

pMji (χ)Mji =∑
pMij (χ)Mij = wi(χ)ℓ

I
i . Thus,

Eχ

[
(1− β)(σ − 1)

σ
− wi(χ)

Yi(χ)
ℓIi

]
= 0.

Imposing labor market clearing, it must be that ℓi(χ) + ℓIi = Li for all states of

the world. Jointly, with the aggregate demand equation, it follows that

Li − ℓIi =
β(σ − 1)

σ

Yi(χ)

wi(χ)
,

which in turn, implies that

Eχ

[
(1− β)(σ − 1)

σ
− β(σ − 1)

σ

ℓIi
Li − ℓIi

]
= 0 =⇒ ℓIi = (1− β)Li

=⇒ ℓi(χ) = βLi ∀i ∈ I,χ ∈ G(χ).
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This means that equilibrium aggregate profits are equal to

πi(χ) = pi(χ)qi(χ)− wi(χ)ℓi(χ)−
∑
j

pMji (χ)Mji

=
β + σ(1− β)

σ

σ

β(σ − 1)
wi(χ)ℓi(χ)− wi(χ)(1− β)Li

= wi(χ)Li

[
β + σ(1− β)

σ − 1
− (1− β)

]
=

wi(χ)Li

σ − 1
.

Finally, from the budget constraint, Yi(χ) = wi(χ)Li + πi(χ). Combining these

expressions, we can show that

Yi(χ) =
σ

σ − 1
wi(χ)Li.

Lemma 3: Proof. Let labor in region 1 be the numeraire. We prove that wages

in each location i, wi, are deterministic by showing that labor market clearing must

occur at the time of producing intermediates.

By backward induction, after intermediate inputs have been produced, final goods

producers in each region face an inelastic residual labor supply equal to L̄i. Aggregate

labor demand in each region is given by,

LD
i (χ) =

 Yi(χ)

ϕi

(∑
j∈I χjMij

)1−β
pi(χ)


1
β

,

where final goods’ prices can be written as

pi(χ) =

[
β(σ − 1)

σ

]−β

ϕ−1
i

∑
j∈I

χjMij

−(1−β)

wi(χ)
βYi(χ)

1−β.

If we plug the expression for prices, in the aggregate labor demand equation, and

simplify we get that,

LD
i (χ) = βLi

Crucially, aggregate labor demand by final goods producers does not depend on the

realization of the shocks, χ. However to clear the labor market in each location the

xiv



wage rate needs to be such that the residual labor supply that final goods’ producers

face, L̄i, is equal to their inelastic labor demand. The wage rate is set ex-ante when

intermediate good production takes place and is independent of the realization of the

shocks. As a corollary, this implies that the wage rate, wi(χ), aggregate profits πi(χ)

and aggregate income Yi(χ) are all deterministic.

C.3 Additional Results: Comparative Statics

Heterogeneous risk and autarky. We maintain the scenario in Section 3.4 but

raise trade costs to infinity, shutting down inter-regional input sourcing. Figure C1

illustrates that while the probabilities of shocks remain the same as the heterogeneous

risk with trade case above, bilateral sourcing mimics a no-risk case. However, the

impact on expected real wages is very different. The riskiest region sees the lowest

expected real wages, while the safest regions see the highest expected real wages, as

they have the lowest expected prices due to the lowest shock probabilities and fully

domestic sourcing.

Figure C1: Scenario with heterogeneous risk and infinite trade costs

(a) Shock probabilities (b) Bilateral Sourcing Shares (c) Real Wages

Note. This figure presents the case where trade costs are set to infinity. The figure in the left
panel show the probability that each region is hit by a shock, as well as a visual representation
of the geographical location of regions in space. The figure in the middle panel consist of a 3x3
input-output matrix where the buying regions are in the vertical axis and the supplying regions are
in the horizontal axis. Each line represents the share of inputs purchased by a buying regions from
each supplying region. The right panel presents the expected real wages for each region. The scales
are shown to the right of each figure.

Homogeneous risk, heterogeneous distance. Figure C2 illustrates the bilateral

sourcing shares when the risk of shocks in each region is ρ = 0.5. Firms now face a

trade-off: as shocks are independent across regions, they can reduce the probability of

input disruptions by sourcing from multiple regions. On the other hand, sourcing from

other regions is costly, given trade costs. As a result, firms still largely source inputs
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from their own regions, but also diversify by sourcing some inputs from geographically

closer regions where trade costs are lower. The figure illustrates that this higher

demand for inputs from more central regions in equilibrium results in higher expected

real wages in these regions. These more central regions also diversify their risk the

most by participating in interregional sourcing. Note that the expected price index

in more central regions is, therefore, lower in equilibrium, as firms from these regions

pay less in trade costs for inputs and better diversify risk.

Figure C2: Scenario with homogeneous risk, heterogeneous distance

(a) Bilateral Sourcing Shares (b) Real Wages

Note. The figures in the left panel consist of a 3x3 input-output matrix where the buying regions
are on the vertical axis, and the supplying regions are on the horizontal axis. Each line represents
the share of inputs purchased by a buying region from each supplying region (column). The figures
in the right panel presents the real wages for each region, as well as a visual representation of the
geographical location of regions in space. The regions are in a straight line, such that the regions
have different distances between each other. The scales are shown to the right of each figure.

C.4 Inventories - descriptive evidence

In Section B.1.2, we argue that our model without inventories estimates that a 1%

decrease in purchases implies a 0.47% decline in sales, which is close to the empirically

estimated 0.43% decline in sales. This suggests that while firms might use strategies

other than multi-sourcing to protect themselves from shocks, we can approximate the

overall sales impact without explicitly incorporating other channels.

We investigate how important inventory holdings are in India. While we do not

observe inventories directly in our data, we compute measures at the product level

using two alternative approaches. First, we use the 2014-5 Annual Survey of Industries

(ASI) to compute, for each HSN-4 product, the average months of inventory held by
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firms. We divide the closing value of finished goods by the average monthly sales to

measure average inventory/sales. Second, we use our transaction data to compute the

average gap in terms of months between two consecutive purchases of each HSN-4

product. Products that are purchased on average with larger gaps will have more

accumulated inventories than those with more frequent purchases.

Figure C3: Product-level inventories and multisourcing, by product

(a) Avg months of inventory held (b) Avg months between purchases

Note. In both figures, the horizontal axis plots the share of firms that we observe sourcing a product
from at least two suppliers during 2019. In the left panel, the vertical axis measures the average
months of inventories held for each product, as computed from the ASI. The vertical axis in the right
panel, computes for each product the average number of months between consecutive purchases as
measured from our transaction data.

A first thing to note is that the levels of inventories for most products in the data

are quite low. According to the average months of inventory held from the ASI, the

mean across products in 0.91 months of inventory. The 75th percentile is 0.96, which

reinforces that for most product, firms hold less than one months of inventory. In

Figure C3, we correlate both measures with the fraction of firms that multisource a

given HSN-4 product computed from our transaction data. As shown in the figure,

both measures show that there is no correlation between how much a product is multi-

sourced and the level of inventory holdings. While inventories might be a relevant

strategy for some products, they don’t seem to be substitutes or complements to

multi-sourcing for our firms.
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D Quantitative Appendix

Table D1: Calibrated moments

Parameter Source

Li: Labor endowments Annual Survey of Industries (ASI), 2019-20

ϕi: Region productivities Ackerberg et al. (2015) estimation (ASI, 2004-2007)

τij: Iceberg trade costs
Regression of within firm-product price on distance

between buyer and seller (Transaction data)

ρi: Shock probabilities
Minimum distance estimator using sourcing shares across

districts (Transaction data)

χi: Shock parameter
Match drop in buyer purchases

from event study (Transaction data)

β: Labor share 0.19: Ackerberg et al. (2015) estimation (ASI, 2004-2007)

σ: Demand elasticity 2: Based on Boehm et al. (2023)

D.1 Model Probabilities - Additional Analysis

Figure D1: Model probabilities, Productivities and Distance

(a) Prob vs Productivities (b) Prob v Average Distance

Note. In this figure, we plot the estimated probabilities against some observables. In the left
panel, we correlate the probabilities with Log(Productivities). In the right panel, we correlate the
probabilities with the average distance to the state of our study.

E Alternative Models

In this appendix we consider two alternative models. First, we model risk probabilities

using observables in Appendix E.1. Second we consider a CES aggregator of inputs

in Appendix E.2
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Figure D2: Model Probabilities and Projected Observables

(a) Average Daily Rainfall -
Projected 2050

(b) Coastal Flooding - Pro-
jected 2050

(c) Riverine Flooding - Pro-
jected 2050

.

(d) Standardized Precipation
Index - Projected 2050

(e) Average Temperature -
Projected 2050

Note. In this figure, we plot the estimated probabilities against 2050 projections for climate observ-
ables. In Figures D2a and D2e, we correlate the rainfall and temperature projections for year 2050
with the recovered probabilities. Figures D2b use the projected coastal flooding, while Figures D2c
correlate the probabilities with projected riverine flooding, respectively. A more detailed definition
of each of the variables can be found in Appendix D.1.

Figure D3: Model Probabilities, Price Indices and Wages

(a) Price Index (b) Real Wage Variance

Note. In this figure, we plot the model-derived price index (left panel) and real wage variance (right
panel) against the estimated disruption probabilities.

E.1 Projecting Probabilities on Observables

In this model, we describe an alternative estimation strategy for the disruption prob-

abilities, ρi. Instead of computing one parameter per region, we parameterize the
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Figure D4: Ahmadabad sourcing, Kolkata sourcing – Free Trade

Note. In this figure, we plot model sourcing shares with Free Trade for Ahmadabad district (left
panel) and Kolkata district (right panel).

Figure D5: Quantitative results - ∆ in Free Trade

(a) Expected Welfare (b) Log Expected Real Wages (c) Variance of Real Wages

Note. This figure shows welfare (Panel a), expected real wages (Panel b) and their variance (Panel
c) for the counterfactual of free trade. The figures show the percentage changes in these variables
under the free trade counterfactual relative to the baseline scenario.

vector {ρi}Ii=1 on a vector of observable characteristics, Zi. This vector Zi includes

a constant term, average court delays, ruggedness, elevation, night lights, average

rainfall, average coastal flooding, average riverine flooding, and average temperature.

We include all of these variables in logs, and we add a dummy for the case in which

historical coastal flooding is positive, to allow the function to allow the function to

flexibly estimate the asymptotic behavior of the log at 0. Then, we assume that these

probabilities have the following functional form,

ρi =
eZ

′
iγ

1 + eZ
′
iγ
,
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where γ is the vector of parameters that we estimate by minimizing the gap between

model-implied and the observed average sourcing shares in the data.

In Table E2, we present the estimates of the vector γ. The resulting probabilities

from this approach are shown in Panel (c) of Figure 5.

This estimation approach requires estimating fewer parameters than our baseline,

but necessitates that we take a stance on the sources of district-level risk. While the

estimation approaches are independent of each other, the estimated coefficients for

rainfall, flooding and temperature are positive, consistent with the baseline. Night-

lights have a zero coefficient, also consistent with the baseline. In contrast to the

baseline, however, courts also contribute positively to risk under this approach.

Table E2: Estimates of the Model for the Probabilities

Constant Courts Ruggedness Elevation Night Rainfall Coastal Coastal Riverine Temperature
Lights Flooding Dummy Flooding

γ -1.20 0.01 1.18 0.08 0.00 0.19 0.27 0.08 0.07 0.82

Figure E6: Estimated Disruption Probabilities for Alternative Models

(a) Parameterized Risk (b) Finite Elasticity Model-Implied Risk

Note. We plot the model-implied district-level disruption probabilities for the alternative models.
The left panel plots the district-level disruption probabilities implied by the parameterized approach
outlined in the text. The right panel shows the district-level disruption probabilities obtained by
following the same approach as in the baseline model, but allowing a finite elasticity of substitution
across inputs of different origins. The scales are shown to the right of each figure.
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E.2 A Model with Finite Elasticity Across Inputs

In this appendix, we develop a model in which we relax the assumption of perfect

substitution of inputs across different regions by allowing for a finite elasticity of

substitution, akin to an Armington model. Firms will have two incentives to source

input varieties from different regions. The first one is the diversification motive, which

is the main focus of this paper. The second incentive corresponds to love-for-variety.

The only modification to the model in Section 3 is to allow for imperfect substitution

in the aggregator of inputs in Equation 6. Thus, the expression becomes:

xi(ω) =

∑
j∈I

x
ε−1
ε

j

 ε
ε−1

.

Since this assumption is just changing the way that the received input units are

aggregated, the ex-post problem of the firm remains unchanged. Profits as a function

of the total number of inputs the firm has are:

πi(Mi;χ) = κw
β(1−σ)

β+σ(1−β)

i

[YiPσ−1
i

]
ϕσ−1
i


∑

j∈I

[χjMji]
ε−1
ε

 ε
ε−1


(1−β)(σ−1)


1

β+σ(1−β)

,

where κ =
[
σ(1−β)+β
β(σ−1)

] [
β(σ−1)

σ

] σ
β+σ(1−β)

. The sourcing problem of the firm is to choose

Mij to maximize expected profits minus order costs

max
Mij≥0

Eχ

κw
β(1−σ)

β+σ(1−β)

i

[YiPσ−1
i

]
ϕσ−1
i


∑

j∈I

[χjMji]
ε−1
ε

 ε
ε−1


(1−β)(σ−1)


1

β+σ(1−β)

−
∑
j∈I

pMj Mji,

(30)

with first-order condition,

Eχ

χjΘi

∑
j∈I

(χjMji)
ε−1
ε


−ε+β+σ(1−β)

β+σ(1−β)

(χjMji)
− 1

ε

 ≤ pIj .
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In this particular model due to an Inada condition, the solution will be interior, and

is implicitly given by (after plugging in the GE components):

Mji = (1− β)ε (wiLi)
ε (pIj )

−ε

Eχ

(
χ

ε−1
ε

j

[∑
j∈I (χjMji)

ε−1
ε

]−1
)−ε .

where

Θi = (1− β)wiLi

∑
j∈I

[χjMji]
ε−1
ε

− ε
ε−1

(1−β)(σ−1)
β+σ(1−β)

Notice that we cannot derive a closed-form solution for this expression; we can

only define it implicitly, and solve for the demand of inputs numerically.

Proposition 2 The ex-ante profit function described in Equation 30 is concave in

orders of inputs Mji.

Proof. As the cost of materials is linear in Mij and constraints are conventional

(linear) non-negativity constraints, it suffices to show that the expected profits func-

tion Eχ (π(M ;χ)) is concave inM . The expectation operator preserves the concavity

of π(M ;χ) which is the only thing required to prove. Concavity of the CES aggre-

gator follows from the fact that it is a quasi-concave function homogeneous of degree

1. The concavity of ex-post profits, π(M ;χ), follows from the parametric restriction,
(1−β)(σ−1)
β+σ(1−β)

< 1, as the composition of concave functions is concave.

E.3 Quantitative Implications

Table E3 summarizes the baseline and counterfactuals in the two alternative models.

The insights are similar to the baseline model. In both models, autarky is welfare de-

creasing, though there is spatial heterogeneity. In the CES model, autarky decreases

welfare by two orders of magnitude more as autarky additionally implies losses from

variety as only own-region inputs can be used to produce. Free trade is welfare im-

proving in both models. Interestingly, the implications of climate risk changing are

similar in both models, despite their independent estimation and varied structure. On

average welfare decreases by 2% in the climate counterfactual in both models (2.01%

in the baseline). The fraction of districts with real wage declines is larger in the CES

model, at 86.35%, than in the projected probabilities model, at 54.98%.
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Figure E7: Counterfactuals: Climate Risk Increase – Alternative Models

Parameterized Risk Profile

(a) ∆ in Probabilities (b) ∆ in Welfare

Finite Elasticity of Substitution Across Inputs

(c) ∆ in Probabilities (d) ∆ in Welfare

Note. We plot the change in probabilities of climate risk (Panel A), and the change in welfare (Panel
B) for the model with parameterized risk. In Panel C and Panel D, we plot the change in probabilities
of climate, and the change in welfare for the model with a finite elasticity of substitution.
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Table E3: Model Counterfactuals: Summary – Alternative Models

Counterfactual ∆ in Welfare ∆ in log Expected Real Wages ∆ in Real Wage Volatility % districts
Avg. change Range Avg. change Range Avg. change Range Real wage declines

Parameterized Risk
Baseline risk
Autarky -6.79 3.75 2.54 1.31 7.14 5.97 2.58%
Free Trade 7.40 2.32 4.96 1.57 -2.42 1.32 0.00%
Alternative risk
Climate change -2.00 4.68 -2.12 4.67 -0.02 0.11 54.98%

Finite Elasticity of Substitution Across Inputs
Baseline risk
Autarky -198.96 42.01 -186.83 43.34 11.87 3.71 100.00%
Free Trade 15.33 1.08 15.33 1.07 4.25 2.45 0.00%
Alternative risk
Climate change -2.00 2.71 -1.96 2.71 0.03 0.00 86.35%

Note. This table shows statistics of the distribution of percentage changes between the baseline sce-
nario with current climate risk and costly trade and other scenarios, weighted by district population.
Range refers to the interquartile range.
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